搜索资源列表
knn-MATLAB
- 这是一个实现简单的多数表决法的KNN算法。KNN算法涉及三个重要的步骤,分别是决定K的大小;距离的表达方法(一般有欧式距离,曼哈顿距离,Minkowski距离);决策方法(多数表决法,KD树法等)。本程序是采用多数表决的决策方法,距离表达采用欧式距离。适用于小样本少特征的数据集。(KNN algorithm realized by MATLAB, useful for small training set and less features.)
KNN
- 人工智能课程的KNN算法实现,包括回归和分类。(Artificial intelligence curriculum KNN algorithm, including regression and classification.)
knn
- 模式识别中的k近邻算法,经过测试,运行结果很好。 最小距离分类器 : 它将各类训练样本划分成若干子类,并在 每个子类中确定代表点 。测试样本的类别则以其与这些代表点距离最近作决策。该方法的缺点是所选择的代表点并不一定能很好地代表各类,其后果将使错误率增加。(The k nearest neighbor algorithm in pattern recognition has been tested and the result is very good. Minimum distance c
PCA+mnist
- 基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。 经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set. After PCA dime