搜索资源列表
4378347348348
- 基于遗传算法的BP神经网络气象预报建模,20世纪90年代以来,国内外在大气学科中开展了很多有关神经网络预报建模和气候分析等应用研究。然而随着神经网络方法在大气科学领域研究的不断深入,研究人员发现神经网络方法在实际业务天气预报应用中存在一个重要的问题-BP neural network modeling of weather forecasting, in the 20th century since the 1990s, domestic and international discipline
Adptive
- 神经网络的自适用算法,利用神经网络对系统辨识和跟踪。此程序为c语言和matlab混和编程,由c语言实现算法,由matlab来显示图形。-neural network algorithm applied since the use of neural network system identification and tracking. This procedure c mixed language and Matlab programming, C language algorithms fro
nnforcast
- 本程序根据训练好的网络文件ANN.mat预测新的数据文件,得到均方误差,并画出预测数据和原数据的对比图。此程序运用到了很多Matlab编程中常用到的表达方式,还有一些神经网络编程的基本概念的表达,如归一化的表达。希望能对别人有所帮助.-the procedures under the trained network file ANN.mat anticipating new data files, to be mean-square error. and the mapping out of t
BP_RBF
- 讲解了神经网络个径向基函数两个程序下载,可以应用-on a neural network-RBF two procedures download, can be applied
rjMCMCsa
- On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and
On-Line_MCMC_Bayesian_Model_Selection
- This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation a
PNN
- PNN又称为概率神经网络,它最初由数学家Specht于1990年提出,后经Master[1995]等不断发展和完善,已成功地应用于机器学习、人工智能、自动控制等众多领域.概率神经网络比多层前馈网络的数学原理简单,且易于实现-PNN is also known as the probabilistic neural network, which was first introduced by the mathematician Specht in 1990, after the Master [1
FuzzyBPNN
- matlab格式源代码。功能:模糊BP神经网络集成解耦算法和应用于控制优化模型问题。-matlab source code format. Function: fuzzy BP neural network ensemble decoupling control algorithm and optimization model applied to the problem.
wavelet_bp
- 自己编写的小波神经网络的代码。已经得到成功的应用-I have written code for wavelet neural network. Has been successfully applied
hopfieldNN
- matlab格式源代码。功能:HOPFIELD神经网络优化计算算法源码和应用于数字识别问题。-matlab source code format. Function: HOPFIELD neural network optimization algorithm applied to the digital source and identify the problem.
RBF
- 基于RBF神经网络的语音识别方法的应用研究-RBF neural network-based speech recognition methods applied research
1985528BP_RBF
- ADIAL Basis Function (RBF) networks were introduced into the neural network literature by Broomhead and Lowe [1], which are motivated by observation on the local response in biologic neurons. Due to their better approximation capabilities, si
ANAL
- 将免疫算法应用于神经网络中,在油色谱的数据处理中的想法-The immune algorithm is applied to neural networks, in the oil chromatography data processing in the idea of
TimeSeriesPredictionUsingSupportVectorRegressionNe
- 为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR—NN)。SVR—NN 用支持向量回归(SVR)方法获得网络的初始结构和权值, 白适应地生 成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点疹教和权 主。 SVR—NN有很 好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的“过拟合,’现象。将SVR—NN 应用到时间序列预测上。结果表明,SVR.NN预测模型能精确地预测混沌时间序列,具有很好的 理论和应用价值。-Ab
NNC
- 有关神经网络方面的源程序算法,应用到数据挖掘中-The neural network of the source algorithm, applied to data mining
NN_xLMS
- 基于神经网络在线辨识的自适应逆振动控制技术。可以有效地应用到非线性系统的控制。-Line identification based on neural network adaptive inverse vibration control technology. Can be effectively applied to nonlinear system control.
HebbNN
- 简单的神经网络学习规则赫布matlab代码。 这是不知情的初学者学生。它可应用于如简单的任务逻辑“和“,”或“,”不是“简单的图像和分类。 -Simple Matlab Code for Neural Network Hebb Learning Rule. It is good for NN beginners students. It can be applied for simple tasks e.g. Logic "and", "or", "not" and simple
Matlab-PSO-is-applied-to-neuralnet
- 粒子群优化算法(PSO)应用于神经网络优化程序。分为无隐含层、一隐含层、二隐含层。运行DemoTrainPSO.m即可-Particle Swarm Optimization (PSO) used neural network optimization program. Divided into no hidden layer, a hidden layer, two hidden layers. You can run DemoTrainPSO.m
Neural-Network-Training
- 本程序将神经网络训练的算法应用于电力系统的负荷预测,适应性强,结果准确-This program will train the neural network algorithm is applied to the power system load forecasting, adaptable, accurate
rbf500
- RBF神经网络建模,也可适用于多输入多输出(RBF neural network modeling can also be applied to multi input and multi output)