搜索资源列表
牛顿迭代法(M)
- 原题:编写一个子程序NewTon(float x0,float eps,float x1)。它的功能是用牛顿迭代法求f(x)=x*x*x-2x*x+4x+1在x=0附近的一个实根。若迭代成功,则返回费0值;否则,返回0。-original title : the preparation of a subroutine NewTon (x0 float, float eps, float x1). Its function is to use Newton's iterative meth
optimization.rar
- 最优化方法的一些基本算法的实现:1,0.618法;2,牛顿法;3,改进牛顿法;4,FR法;5,DFP法,Ways to optimize some of the basic algorithm implementation: 1,0.618 method 2, Newton' s method 3, improved Newton method 4, FR Act 5, DFP method
01
- 编制通用程序:对n+1个节点xi及yi=f(xi)(i=0,…,n) (1)n次拉格朗日插值计算公式Ln(x); (2)n次牛顿向前插值计算公式; -The preparation of common procedures: the n+1 nodes xi and yi = f (xi) (i = 0, ..., n) (1) n times Lagrange interpolation formula Ln (x) (2) n times Newton forward inte
OneDimensionalSearch
- 优化设计中的一维搜索方法,包括牛顿梯度法,平分线法,割线法,以及各种插值方法;能计算函数最优点,以及迭代的循环次数-Optimal Design of one-dimensional search methods, including Newton
NewtonIterationMethod
- 通过使用Newton迭代法求解方程 并分析它的解法收敛性; 牛顿迭代法是比较适合用计算机来计算。 -Through the use of Newton iteration method for solving equations and analyze the convergence of its solution Newton iteration is more suitable for the computer to calculate.
Bin
- 牛顿迭代法求非线性方程的根 非常好用;-Newton iterative method for roots of nonlinear equations very easy to use
newton
- 自适应中的牛顿法。结论,当u靠近0.5时,wk 迅速增加到最佳权, 当u小于0.5时,wk 沿着一个方向单向靠近最佳权;u大于0.5时wk沿着起始点指向最佳权的方向左右振荡并向最佳权收敛 ! -The Newton method adaptive. Conclusion, when u close to 0.5, wk quickly right to the best, when u is less than 0.5, wk along the a direction clo
mulDNewton
- 本代码为牛顿下山法求解非线性方程组。其调用格式为[r,m]=mulDNewton(F,x0,eps) 其中F:非线性方程组,x0:初始解,eps:解的精度;r:求得的一组解,n:迭代步数。-The code for Newton' s method for solving nonlinear equations. Its call format [r, m] = mulDNewton (F, x0, eps) where F: non-linear equations, x0: init
ji-suan-fang-fa-shiyan
- 计算方法实验:包括高斯迭代和牛顿下山法;1、用Gauss - Seidel 迭代法求解方程组 10x1-x2-2x3=7.2 -x1+10x2-2x3=8.3 -x1-x2=5x3 输入:系数矩阵A,最大迭代次数N,初始向量,误差限e 输出:解向量 2、用牛顿下山法解方程 x*x*x-x*x-1=0(初值为0.6) 输入:初值,误差限,迭代最大次数,下山最大次数 输出:近似根各步下山因子。-Experimental method: includ
da2
- .牛顿—科特斯公式:梯形公式、辛普森公式、科特斯公式; 2.复化求积公式:复化梯形公式、复化辛普森公式; -. Newton- Cortez formula: the trapezoidal rule, Simpson formula, Cortez formula 2. Complex of the quadrature formula: complex trapezoid formula, complex formulas of Simpson
newton
- 牛顿迭代法函数,有6个参数,可缺省后3个参数;动态画出迭代过程-Newton iteration function, there are 6 parameters, 3 parameters after the default dynamic iterative process to draw
Newton
- 1、使用牛顿法求sqrt(2); 2、用牛顿法求 fx=(x-1)*(exp(x-1)-1)的误差以及误差比; 3、用牛顿法及其他两种方法求 fx=x^4-4*x+x^2的重根 -1, using Newton' s method for the sqrt (2) 2, using Newton' s method for the fx = (x-1)* (exp (x-1)-1) error and error ratio 3, using Newton
matlab
- 牛顿法 等求解方程的零根;通过选取不同的初始点实现-Newton method
For-approximate-root
- 用递推式法求解;用二分法,牛顿迭代法,迭代法求解方程的近似根-Using recursive method for solving with the dichotomy, Newton iteration method, iteration method for solving the approximate root
computing
- 包括: 列主元Gauss消去法解线性方程组; 矩阵的LDLT和Cholesky分解; 追赶法解三对角方程组; Jacobi和Gauss-Seidel方法解方程组; Newton插值多项式和三次样条插值多项式; 复化Simpson公式求解定积分; Romberg方法求解定积分; 二分法和割线法求非线性方程的解。-Include: Main-element Gauss elimination method for solving linear equations
quasi-Newton-method
- 功能:用BFGS算法求解无约束问题:min f(x) 输入:x0是初始点,fun,gfun分别是目标函数及其梯度; varargin是输入的可变参数变量,简单调用bfgs时可以忽略它 但若其他程序循环调用该程序时将发生重要作用-Function: with BFGS algorithm solving unconstrained problem: min f (x) input: x0 is the initial point, fun, gfun respective
Newton-Cotes
- Newton-Cotes 的算法说明、流程图、运行代码;-Newton-Cotes numerical integral algorithm, flow chart, operation code
牛顿插值和欧拉法解方程
- 欧拉法解常微分方程和牛顿插值法,是数值分析中的经典算法,适合初学者。(Euler solutions of ordinary differential equations and newton interpolation are the classic algorithms, they are suitable for beginners.)
newTon
- 牛顿插值多项式源代码;三次样条插值多项式源代码;(Newton interpolation polynomial source code; three spline interpolation polynomial source code;)
Van der waals
- 从范德瓦尔斯方程出发,利用牛顿迭代法,求解对应材料的binomal线和binomal线,给出相应的相图,并作出对应的P-T图像。(Starting from the Van Der Waals equation, using the Newton iterative method, the binomal line and the binomal line of the corresponding materials are solved, and the corresponding phase