搜索资源列表
-
0下载:
Polynomial fit functions
=== ===
RegressionObject.cls contains a class that provides an easy way to add polynomial regression functionality to any application. If you just want linear regression or a very high degree, no matter: this class ha
-
-
1下载:
多层感知器(MLP)(BP算法训练)、径向基函数网络(RBF网络)、支持向量机(SVM)对2D Mexican Hat、Gabor、Friedman 以及Polynomial等几种函数数据集进行回归和预测-multilayer perceptron (MLP) (BP algorithm training), RBF network (RBF), Support Vector Machine (SVM) to 2D Mexican Hat, Gabor, Friedman Polynomial
-
-
2下载:
LIBSVM 是台湾大学林智仁 (Chih-Jen Lin) 博士等开发设计的一个操作简单、易于使用、快速有效的通用 SVM 软件包,可以解决分类问题(包括 C- SVC 、n - SVC )、回归问题(包括 e - SVR 、 n - SVR )以及分布估计( one-class-SVM )等问题,提供了线性、多项式、径向基和 S 形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。,LIBSVM is林智仁Taiwan Univ
-
-
0下载:
Locally weighted polynomial regression LWPR is a popular instance based al gorithm for learning continuous non linear mappings For more than two or three in puts and for more than a few thousand dat apoints the computational expense of pre dic
-
-
0下载:
强局部加权回归算法由Cleveland[7]提出,主要利用局部观测数据对欲拟合点进行多项式加权拟合,并用最小二乘法进行估计.它综合了传统的局部多项式拟合,局部加权回归以及具有强鲁棒性的拟合过程
-Strong locally weighted regression algorithm by Cleveland [7] proposed, mainly using local observational data points on the polynomial fitting For wei
-
-
0下载:
Matlab数据统计和分析的程序,包含下面所列的多种算法的
MultiLineReg 用线性回归法估计一个因变量与多个自变量之间的线性关系
PolyReg 用多项式回归法估计一个因变量与一个自变量之间的多项式关系
CompPoly2Reg 用二次完全式回归法估计一个因变量与两个自变量之间的关系
CollectAnaly 用最短距离算法的系统聚类对样本进行聚类
DistgshAnalysis 用Fisher两类判别法对样本进行分类
MainAnalysis 对样本进行主成分
-
-
0下载:
a modified method for polynomial regression is described in a very simple matlab program. easy to understand
-
-
0下载:
Least-square curve fitting using polynomials is probably the most basic way to perform some parametric regression analysis. Foor basic tools for polynomial curve fitting are provided here. I also strongly recommend the exhaustive function POLYFITN
-
-
1下载:
回归分析MATLAB工具箱的使用,包括多元线性回归,多项式回归,多元二项式回归,非线性回归,逐步回归-Regression analysis using the MATLAB toolbox, including multiple linear regression, polynomial regression, multiple binomial regression, nonlinear regression, stepwise regression
-
-
0下载:
基于SVM数据分类及回归分析,并采用不同的核函数如RBF,sigmoid,polynomial等-the data classification and regression analysis based on SVM, by using different kinds of kernel functions, for examples, RBF,sigmoid and ploynomial and so on
-
-
0下载:
插值
查找
常微分方程(组)的求解
多项式与连分式函数的计算
非线性方程与方程组的求解
复数运算
汉字操作
基本图形操作
极值问题
矩阵特征值与特征向量的计算
拟合与逼近
排序
数据处理与回归分析
数学变换与滤波-Interpolation to find the ordinary differential equation (group) polynomial continued fraction function to calculate
-
-
1下载:
多元回归源代码。回归方式:配置为0表示进行多元线性回归;1进行多项式回归;2进行多元二次回归。变量/阶数:回归方式配置为0时表示参与回归的变量数,配置为1时表示回归的阶数;(默认待回归变量不超过6个或拟合阶数不超过6次)
-Multiple regression source code. Regression: Configure multiple linear regression polynomial regression 2 multivariate quadratic regre
-
-
0下载:
MultiLineReg:用线性回归法估计一个因变量与多个自变量之间的线性关系
PolyReg 用多项式回归法估计一个因变量与一个自变量之间的多项式关系
CompPoly2Reg:用二次完全式回归法估计一个因变量与两个自变量之间的关系
CollectAnaly:用最短距离算法的系统聚类对样本进行聚类
DistgshAnalysis:用Fisher两类判别法对样本进行分类
MainAnalysis:对样本进行主成分分析.-MultiLineReg: estimated
-
-
0下载:
多元多项式回归,即一个程序,一个程序,对于给定的数据确定最小误差平方多项式。输出值也可能被转化运用Logit变换,从而使多元logistic回归。如何应用此程序的简要描述,可以发现在C源码包文件中的倒退/ EX / README。-A program for multivariate polynomial regression, i.e., a program that determines a minimum squared error polynomial for given data. T
-
-
0下载:
数理统计,一元非线性,一元线性,二元多项式逐步回归,分布假设检验-Mathematical statistics, one yuan nonlinearity, a linear, binary polynomial regression, the distribution of hypothesis testing
-
-
0下载:
线性回归的学习算法。包括数据分析、线性回归、在线梯度下降、多项式回归。压缩包中给出.txt数据文件及说明文档。-Linear regression learning algorithm. Including data analysis, linear regression line gradient descent, polynomial regression. Compressed data given .txt file and documentation.
-
-
0下载:
this code helps to find answer through polynomial regression method
-
-
0下载:
一元线性回归,多元线性回归,广义线性回归,多项式回归-Linear regression, multiple linear regression, generalized linear regression, polynomial regression
-
-
0下载:
一元多项式回归模型及其Matlab程序,已知各年度的税收数据见表11,预测第15年的税收-One dollar polynomial regression model and its Matlab program, known tax data for each year in Table 11, forecast the 15th year of tax
-
-
0下载:
polynomial regression
-