搜索资源列表
ProSOM
- SOM的学习规则有三个主要阶段: 1)寻找与输入模式xk最接近的连接权向量Wj*=(wj*1, wj*2,….., wj*N) 2)将该连接权向量Wj*进一步朝向与输入模式xk接近的方向调整 3)除调整连接权向量Wj*外,还调整邻域内的各个连接权向量,并随着学习次数的增加,逐渐缩小邻域范围-SOM learning rules are three main stages : 1) Find the input mode xk closest to the connection wei
2008925175139289
- 1.掌握SQL Server数据库系统SQL数据定义语言的使用方法 2.掌握SQL Server数据库系统SQL查询语言的使用方法 3.了解ADO数据控件与SQL Server的连接方式 4.用ADO数据对象对数据表进行单条件查询 -1. To master SQL Server database system SQL data definition language of the use of Method 2. To master SQL Server database sy
som(Jal.You)
- SOM神经网络(自组织特征映射神经网络)是一种无导师神经网路。网络的拓扑结构是由一个输入层与一个输出层构成。输入层的节点数即为输入样本的维数,其中每一节点代表输入样本中的一个分量。输出层节点排列结构是二维阵列。输入层X中的每个节点均与输出层Y每个神经元节点通过一权值(权矢量为W)相连接,这样每个输出层节点均对应于一个连接权矢量。 自组织特征映射的基本原理是,当某类模式输入时,其输出层某一节点得到最大刺激而获胜,获胜节点周围的一些节点因侧向作用也受到较大刺激。这时网络进行一次学习操作,获胜节点
MRTD2D_TE_DB_FDTD
- 基于2阶消失矩的Daubechies尺度函数的TE波2维MRTD仿真,吸收边界条件为FDTD/PML连接边界。-2D MRTD TE mode baseed on 2nd-vanishing moments of Daubechies scaling function simulation, the absorbing boundary condition is FDTD/PML connection boundary.
Self-organizing_feature_map_model
- 自组织特征映射模型(Self-Organizing feature Map),认为一个神经网络接受外界输入模式时,将会分为不同的区域,各区域对输入模式具有不同的响应特征,同时这一过程是自动完成的。各神经元的连接权值具有一定的分布。最邻近的神经元互相刺激,而较远的神经元则相互抑制,更远一些的则具有较弱的刺激作用。自组织特征映射法是一种无教师的聚类方法。-Self-organizing maps model (Self-Organizing feature Map), that a neural n
swdsc
- 采用jsp+javabean+servlet的mvc模式测试数据库师范连接成功-Using jsp+javabean+servlet mvc mode test database the Teachers connection success
Scale-free-network
- Albert-László Barabási与Réka Albert在1999年的论文中提出了一个模型来解释复杂网络的无标度特性,称为BA模型。这个模型基于两个假设: 增长模式:不少现实网络是不断扩大不断增长而来的,例如互联网中新网页的诞生,人际网络中新朋友的加入,新的论文的发表,航空网络中新机场的建造等等。 优先连接模式:新的节点在加入时会倾向于与有更多连接的节点相连,例如新网页一般会有到知名的网络站点的连接,新加入社群的人会想与社群中的知名人士结识,新的论文倾向于引用已被广泛引用
video_tran
- 视频多跳传输,无线网卡采用Adhoc模式,自动连接。-Video multi-hop transmission, wireless LAN using Adhoc mode, automatic connection.