搜索资源列表
多维函数优化程序
- 用JAVA语言编写,包括PSO(Particle swarm optimization, 中文译名为粒子群优化或微粒群算法), DE (Differential evolution, 中文译名为差分进化或差异演化)等算法,有一些不带约束和带约束的算例(如Michelawicz的几个问题)。使用说明见usage.txt、RUNExample.bat和程序中的注释。 -with Java language, including the PSO (Particle swarm optimizat
PSO-DE
- 进化计算中的PSO算法,用c++仿真实现-Evolutionary Computation in the PSO algorithm, using c++ Simulation
psoPde-matlab
- 在基本pso的基础上做改进,引入de算法,高精度实现pso算法的寻优。-On the basis of the basic pso make improvements, the introduction of de algorithm, pso algorithm to achieve high-precision optimization.
psoaco
- 求解离散问题的pso aco 算法,含german信用数据库-Solving the problem of discrete pso aco algorithm, with german credit database
WAVELET_WORK
- THIS MATLAB CODE REDUCE THE SPECKLE NOISE IN SAR IMAGE, IT USE WAVELET FILTER THEN USED CASCADE THREE FILTERS IN TIME DOMAIN (HYBRID TIME AND FREQUENCY DOMAIN). THIS CODE NEED SOME MODIFICATIONS SINCE THERE ARE SOME PROBLEMS LIKE BY COMPUTE PSNR
ABC
- Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. It is as simple as Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithm
Cooperations-in-PSO
- We dene ve cooperation mechanisms in Particle Swarm Optimisation, loosely inspired by some models occurring in nature, and based on two quan- tities: a help matrix, and a reputation vector. We call these ve mechanisms, respectively, Reciproc
Discrete-PSO
- In this paper, a novel Discrete Particle Swarm Optimization Algorithm (DPSOA) for data clustering has been proposed. The particle positions and velocities are defined in a discrete form. The DPSOA algorithm uses of a simple probability approach
GODLIKE
- GODLIKE is an abbreviation of Global Optimum Determination by Linking and Interchanging Kindred Evaluators. This algorithm is an attempt to gen- eralize and improve the robustness of the four meta-heuristic optimization al- gorithms GA, PSO, DE
PSO-tool-Box-Bhanu
- c est un code vectorisé de PSO : vectorised particle swarm optimisation algorithm
jMetal-CPP-version
- 外国人写的基于C++的单目标和多目标优化源程序jMetal 4.5最新版的C++源程序,包括NSGA-II\SPEA2\MOPSO,以及单目标优化算法-粒子群PSO、差分进化DE等。-C++ version of jMetal 4.5
Metaheuristic-Clustering---MATLAB-Code
- Meta-heuristic clustering: Source Code of: GA: Genetic Algorithm PSO: Particles Swram Optimization HS: Harmony Search DE: Differential Evolution
FUZZYaEVOULOTIONARY-
- hybrid fuzzy & (pso-DE-GA)
mhzgjtee
- 合成孔径雷达(SAR)目标成像仿真,采用了小波去噪的思想,主要是基于mtlab的程序,基于分段非线性权重值的Pso算法,计算加权加速度,用于信号特征提取、信号消噪。- Synthetic Aperture Radar (SAR) imaging simulation target, Using wavelet denoising thought, Mainly based on the mtlab procedures, Based on piecewise nonlinear weight v
qhewextu
- 部分实现了追踪测速迭代松弛算法,基于分段非线性权重值的Pso算法,插值与拟合,解方程,数据分析,对信号进行频谱分析及滤波,用于信号特征提取、信号消噪,在matlab R2009b调试通过。- Partially achieved tracking speed iterative relaxation algorithm, Based on piecewise nonlinear weight value Pso algorithm, Interpolation and fitting, solu
qzyzivqq
- 一种噪声辅助数据分析方法,基于分段非线性权重值的Pso算法,是一种双隐层反向传播神经网络,用于信号特征提取、信号消噪,利用自然梯度算法。- A noise auxiliary data analysis method, Based on piecewise nonlinear weight value Pso algorithm, Is a two hidden layer back propagation neural network, For feature extraction, sign
kwgennug
- 实现串口的数据采集,主要为数据分析和统计,基于分段非线性权重值的Pso算法,用于信号特征提取、信号消噪,鲁棒性好,性能优越。- Achieve serial data acquisition, Mainly for data analysis and statistics, Based on piecewise nonlinear weight value Pso algorithm, For feature extraction, signal de-noising, Robustness,
vdkmrwkh
- 用于信号特征提取、信号消噪,通过反复训练模板能有较高的识别率,基于分段非线性权重值的Pso算法,matlab开发工具箱中的支持向量机,预报误差法参数辨识-松弛的思想,验证可用,采用加权网络中节点强度和权重都是幂率分布的模型,详细画出了时域和频域的相关图。- For feature extraction, signal de-noising, Through repeated training zISCHRClate have higher recognition rate, Based on p
自动聚类算法
- 该程序实现基于DE/PSO/GA的进化算法的数据聚类(The program realizes data clustering based on DE/PSO/GA's evolutionary algorithm.)
DEPSO求极值
- 改进的差分粒子群算法,并用于求函数极值,程序中分别于DE PSO 蛙跳进行对比,结果显示,改进的差分粒子群更好(The improved Differential Particle Swarm Optimization (DPSO) algorithm is used to find the function extremum. The program is compared with DE PSO frog jump, and the results show that the improve