搜索资源列表
-
0下载:
动态规划算法求字符串的相似性(编辑距离)-dynamic programming algorithms to find the similarity of the string (edit distance)
-
-
0下载:
对模式识别中的字符串模板匹配问题进行的研究,设计了对任意字符串进行匹配和字符串相似度,即列文斯顿距离进行计算的算法-right pattern recognition template matching string for the research and design of the arbitrary strings and string matching similarity, Ken Livingstone distance calculation algorithm
-
-
0下载:
用动态规划算法思想求最小编辑距离,即近似字符串匹配问题,Thinking of using dynamic programming algorithm for the minimum edit distance, that is, approximate string matching problem
-
-
0下载:
设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。这里所说的字符操作包括:
1. 删除一个字符
2. 插入一个字符
3. 将一个字符改为另一个字符
将字符串A变换为字符串B所用的最少操作数称为A到B的编辑距离,极为d(A,B)。设计一个算法,计算任意两个字符串的编辑距离。
-Set A and B are two strings. Operation will use the least character string A is converted to a
-
-
0下载:
动态规划——编辑距离问题 设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。-Dynamic Programming- edit distance problem Let A and B are two strings. Characters use the least action string A converted to a string B.
-
-
0下载:
字符串的编辑距离也被称为Levenshtein距离(Levenshtein Distance),一般用动态规划来实现。属于经典算法。-Edit distance of the string is also known as the Levenshtein distance (Distance Levenshtein), the general use of dynamic programming to achieve. Belong to the classical algorithm.
-
-
0下载:
VS2013编写的C++程序,计算字符串的编辑距离,返回距离值和矩阵。-VS2013 written in C++ program that calculates the edit distance of the string, and returns the value the matrix.
-
-
0下载:
阿里巴巴面试题个人题解。
对于一个数字串,需要通过一定的操作变成另一个数字串,问最小操作次数。
总共有3钟操作:
1.某位数字加一
2.某位数字减一
3.调换任意两位数字(The Alibaba interview questions personal problem.
For a digit string, we need to turn another operation into another string and ask the minimum number of operations
-