搜索资源列表
prjPolygonCentroid
- using this algorithm find out the Centroid of the Polygon
tracking
- people tracking after performing background subtraction and find the centroid of the blobs use for video suvelliance
Semi-supervised-learning
- 义了一个欧氏距离和监督信息相混合的新的最近邻计算函数,从而将K一均值算法很好地应用于半 监督聚类问题。针对K一均值算法初始质心敏感的缺陷,用粒子群算法的搜索空间模拟聚类的欧氏空间,迭代搜 索找到较优的聚类质心,同时提出动态管理种群的策略以提高粒子群算法搜索效率。算法在UCI的多个数据集 上测试都得到了较好的聚类准确率。-Righteousness of a Euclidean distance and supervision of a mixture of new nearest n
ZX
- 区域内的随机的一些点,求他们的质心,区域的范围和点的个数课改变-The random region at some point, find their centroid boundaries and the number of points changes in class
KMeans
- K-均值聚类算法,属于无监督机器学习算法,发现给定数据集的k个簇的算法。 首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,为每个点找距其最近的质心, 将其分配给该质心对应的簇,更新每一个簇的质心,直到质心不在变化。 K-均值聚类算法一个优点是k是用户自定义的参数,用户并不知道是否好,与此同时,K-均值算法收敛但是聚类效果差, 由于算法收敛到了局部最小值,而非全局最小值。 K-均值聚类算法的一个变形是二分K-均值聚类算法,该算法首先将所有点作为一个簇,然
Shape-Recognation
- Objective - The program should recognize objects like circles, rectangles, and squares the input image. Introduction This is a shapes classifier based on the properties of each shape, like roundness, ratio of dimensions, centroid,?et