搜索资源列表
myworkonnnet
- 多层感知器(MLP)(BP算法训练)、径向基函数网络(RBF网络)、支持向量机(SVM)对2D Mexican Hat、Gabor、Friedman 以及Polynomial等几种函数数据集进行回归和预测-multilayer perceptron (MLP) (BP algorithm training), RBF network (RBF), Support Vector Machine (SVM) to 2D Mexican Hat, Gabor, Friedman Polynomial
gaborsvm1
- 先用gabor 小波滤波器,做特征提取,然后用支持向量机(SVM)做分类,来实现人脸检测.需要用matlab 2010 或更新的版本才能运行-the code is used for face detection.Firstly it use gabor wavelet filter for feature extraction,Secondly it use support vector machine (SVM)for classification.matlab 2010 required.
facedete
- 此程序提取Gabor小波特征,然后由SVM进行分类的Matlab源代码-The Gabor wavelet feature extraction process, then classified by the SVM in Matlab source code
gaborsvm
- 基于gabor的svm算法实现过程,这个程序运行时间较长-Gabor based on the SVM algorithm, the program running time is long
lunwen
- 提出一种多尺度方向(multi-scale orientation,简称 MSO)特征描述子用于静态图片中的人体目标检 测.MSO 特征由随机采样的图像方块组成,包含了粗特征集合与精特征集合.其中,粗特征是图像块的方向,而精特征 由 Gabor 小波幅值响应竞争获得.对于两种特征,分别采用贪心算法进行选择,并使用级联 Adaboost 算法及 SVM 训 练检测模型.基于粗特征的 Adaboost 分类器能够保证高的检测速度,而基于精特征的 SVM 分类器则保证了检测精 度.另
Gabor_SVM
- 通过Matlab,实现Gabor与SVM的结合,实现对大样本数据的车辆与非车辆的模式识别,样本可以自己准备,由于过大没有上传-By Matlab, the combination of Gabor and SVM, vehicles and vehicles of large sample data pattern recognition
gabor
- 利用KNN,SVM等方法选择Gabor滤波器组-Use KNN, SVM and other methods selected Gabor filters
fer
- this paper has used two algorithms i.e local binary pattern and Log gabor filter for facial expression recognition.SVM and MDC are used as a classifier.Log gabor filter showed better performance than Local binary patter
33
- this paper gives a brief discr iption of different methodology for face detection and facial expresssion recognition.for face detection Exhaustive search,Branch and Bound,Viola-Jones methods can be used. for expression recognition gabor filter, discr
Emotion-Recognition
- Human Emotion Recognition using modified Gabor as a feture extraction and SVM classifier
gangbun
- 阐述了负荷预测的应用研究,Gabor小波变换与PCA的人脸识别代码,包括最小二乘法、SVM、神经网络、1_k近邻法。- It describes the application of load forecasting, Gabor wavelet transform and PCA face recognition code, Including the least squares method, the SVM, neural networks, 1 _k neighbor method.
FacialExpressionClassification
- 1. 使用matlab自带的人脸识别工具(Viola-Jones算法)找出人脸的位置,并裁剪出人脸区域。 2. 使用Gabor滤波器识别出人脸的局部特征及纹理。 3. 训练一个SVM进行表情分类。 4. 交叉验证得到表情分类正确率为83.3 。 操作说明和系统描述请见ReadMe.-1. Using matlab with face detection tool (Viola-Jones algorithm) to find the location of a human
36287411work
- 提取GABOR特征,然后建立样本,送入SVM进行分类的表情识别(GABOR features are extracted, and then samples are built into SVM for classifying facial expression recognition)
植物虫害检测(GUI,注释,svm算法)
- 植物虫害检测(GUI,注释,svm算法) 该课题为基于MATLAB SVM方法的植物病害检测系统,带GUI界面,可以识别多种被虫害侵蚀的植物叶子,输出结果。带论文和详细注释。 train 对黄瓜子文件夹所有图片提取 颜色矩特征和gabor纹理特征,然后svm训练 test 对测试图像灰度化,滤波,提取 颜色矩特征和gabor纹理特征,然后svm模型测试,输出类别 colorMom.m 颜色矩特征提取 Gabor_palm.m gabor纹理特征提取(Plant pe