搜索资源列表
-
0下载:
粒子群優化演算法,應用在pgm格式影像上,將影像修飾的更平順。-Computes the smoothness of a given image by particle swarm optimization algorithm.
-
-
0下载:
基于粒子群优化的图像分割算法,希望对大家有帮助-Particle swarm optimization based image segmentation algorithm, we want to help
-
-
2下载:
图像阈值分割,为确定图像分割的最佳阈值,基于粒子群优化算法提出了一种多阈值图像分割方法-Image segmentation, image segmentation to determine the optimal threshold value, based on particle swarm optimization algorithm proposes a multi-threshold image segmentation
-
-
0下载:
一篇遗传算法和粒子群算法的比较,关于图像处理的-A genetic algorithm and particle swarm algorithm comparison, on the image processing
-
-
0下载:
提出一种基于粒子群优化算法的图像矢量量化码书设计算法. 该算法引入粒子群的全局搜索策略 , 结合矢量量化码书设计方法 , 增加了算法解的随机性和多样性.-Proposed based on particle swarm optimization algorithm for image vector quantization codebook design algorithm. The introduction of particle swarm algorithm global search s
-
-
0下载:
In this paper, a multimodal image fusion algorithm based on multiresolution
transform and particle swarm optimization (PSO) is proposed.
Firstly, the source images are decomposed into low-frequency coefficients and
high-frequency coefficients b
-
-
0下载:
针对二维熵图像分割方法在求取最佳阈值时存在计算量大及微粒群算法容易陷
入局部最优且速度较慢等等问题, 提出了基于混沌粒子群优化算法的二维熵图像分割方法。
该方法考虑了图像中像素点灰度 邻域灰度均值对作为阈值对图像进行分割 利用混沌运
动随机性、遍历性和初值敏感性, 将混沌粒子群优化算法与阈值法相结合在二维空间作全局搜
索。实验结果表明了基于混沌粒子群优化算法的二维熵图像分割法用于阈值寻优减少了搜索
时间, 提高了收敛率
-
-
0下载:
image color quantization and reduction using Particle Swarm Optimization algorithm.
-
-
0下载:
A color image quantization algorithm based on Particle Swarm Optimization (PSO) is developed in this
-
-
0下载:
粒子群算法是一种新的模仿鸟类群体行为的智能优化算法,在函数优化、图像压缩和基因聚类中的应用。-Particle Swarm is a new group of birds to imitate the behavior of intelligent optimization algorithm, function optimization, image compression and gene clustering applications.
-
-
1下载:
混沌粒子群算法用于图像分割,程序已调试好,并用多种图像提供使用。分割效果显著。-Chaotic particle swarm optimization algorithm for image segmentation, the program has been debugged, and use a variety of images available. Segmentation effect is remarkable.
-
-
1下载:
基础的粒子群算法附带动态图像显示,例子教程(Basic particle swarm optimization algorithm with dynamic image display, example tutorial)
-