搜索资源列表
MYGA0
- 本程序是一个基本的简单遗传算法示范程序,其优化目标是在〔0,2*pi〕上搜索函数sin(x)*sin(x)的最大值-this procedure is a basic and simple genetic algorithm model procedures, optimizing their goal is [0, 2 * pi] search function sin (x) * sin (x) maximum
5Source
- 包含5个数值智能算法,能实现PI的求解,遗传算法和蚁群算法,贪吃蛇以及学生管理系统。-It contains 5 numeric intelligent algorithm, to achieve PI solving, genetic algorithms and ant colony algorithm, Snake and student management systems.
fuzz19withGA
- optimizing a fuzzy rule based PI controller with Genetic Algorithm
objec_fitness
- optimization of a fuzzy rule based PI controller with using Genetic Algorithm
GA
- 已知函数y=x*sin(10*Pi*x)+2.0。利用人工智能中的遗传算法(GA),计算y在区间(0,2)上的极大值。对于想学习GA的网友们来说,是个很好的Demo。而且对于基因类,已经按照面向对象的思想进行了封装,稍微修改参数就可以用在实际项目中。-Known function y = x* sin (10* Pi* x)+2.0. The use of artificial intelligence in the genetic algorithm (GA), calculating y i
vcDEMO
- 已知函数y=x*sin(10*Pi*x)+2.0。利用人工智能中的遗传算法(GA),计算y在区间(0,2)上的极大值。对于想学习GA的网友们来说,是个很好的Demo。而且对于基因类,已经按照面向对象的思想进行了封装,稍微修改参数就可以用在实际项目中。 实现环境:Visual C++ 6.0. -Known function y = x* sin (10* Pi* x)+2.0. The use of artificial intelligence in the genetic algorit
teja
- AN EFFICIENT GENETIC ALGORITHM CODE TO FIND OPTIMAL VALUES(MAXIMUM) OF SIN(X) FUNCTION IN THE RANGE OF 0 TO 2*PI
GeneticWavelet
- 提出了一种基于遗传算法和小波神经网络的 PI 参数整定方法。首先 ,利用具有自然进化的遗传算法对小波神经网络的初始权值进行优化训练 ,解决了控制器网络初始权系数对控制效果产生的影响 其次 ,利用小波神经网络对PID参数进行在线调节 最后将此算法运用到电机控制系统的 P I D参数寻优中。-A new-type controller based on genetic algorithm andwavelet neural net work was presented.The genetic alg
robot
- 取各障碍物顶点连线的中点为路径点,相互连接各路径点,将机器人移动的起点和终点限制在各路径点上,利用Dijkstra算法来求网络图的最短路径,找到从起点P1到终点Pn的最短路径,由于上述算法使用了连接线中点的条件,不是整个规划空间的最优路径,然后利用遗传算法对找到的最短路径各个路径点Pi (i=1,2,…n)调整,让各路径点在相应障碍物端点连线上滑动,利用Pi= Pi1+ti×(Pi2-Pi1)(ti∈[0,1] i=1,2,…n)即可确定相应的Pi,即为新的路径点,连接此路径点为最优路径。-Ta
myga
- 利用遗传算法求解函数f(x1,x2)=20+x1^2+x2^2-10*(cos(2*pi*x1)+cos(2*pi*x2))的最小值,其中-5<=x1,x2<=5.-Genetic Algorithm for function f (x1, x2) = 20+ x1 ^ 2+ x2 ^ 2-10* (cos (2* pi* x1)+ cos (2* pi* x2)) minimum, which-5 < = x1, x2 < = 5.
5
- 利用Dijkstra算法来求网络图的最短路径,找到从起点P1到终点Pn的最短路径,由于上述算法使用了连接线中点的条件,不是整个规划空间的最优路径,然后利用遗传算法对找到的最短路径各个路径点Pi (i=1,2,…n)调整,让各路径点在相应障碍物端点连线上滑动-Use Dijkstra algorithm to find the shortest path network diagram to find the starting point P1 to the end of Pn from the
GA_PI_traffic_control
- 遗传算法对高速公路入口匝道pi控制器的参数优化-Genetic algorithm for highway entrance ramp PI controller parameters optimization
GA
- 用遗传算法优化PI控制器参数,其中控制对象是一个二阶系统。-With genetic algorithm to optimize the PI controller parameters which control object is a second order systems.
GA
- 遗传算法的设计与实现 y=x.*sin(10*pi*x)+2 - Genetic Algorithm Design and Implementation y=x.*sin(10*pi*x)+2
GeneticAlgorithm_MaxMin
- 目标函数F(s)=21.5+x1*sin(4*pi*x1)+x2*sin(20*pi*x2),运用遗传算法求取函数的最值,课程作业,自己原创。-The objective function F (s) = 21.5+ x1* sin (4* pi* x1)+ x2* sin (20* pi* x2), the use of genetic algorithms to strike the most valued function, course work, their own originali
GA_test
- 遗传算法经典问题,GA求公式最优解,个人手写源代码。公式为f(x1,x2) = 21.5 + x1*sin(4*Pi*x1) + x2*sin(20*Pi*x2)。最优解达38.850252-Classical genetic algorithm problem, GA seeking the optimal solution formula, personal hand-written source code. The formula for f (x1, x2) = 21.5+ x1* si
example2
- 利用遗传算法求f(x,y)=x*cos(2*pi*y)+y*sin(2*pi*x),-2<=x<=2,-2<=y<=2的最大值-Using genetic algorithms for f (x, y) = x* cos (2* pi* y)+ y* sin (2* pi* x),- 2 <= x <= 2,-2 <= y <= 2 the maximum
BGA1031003
- // Simple Genetic Algorithm // binary coded // roulette wheel method // function f(x) = 21.5+x*sin(4*pi*x)-// Simple Genetic Algorithm // binary coded // roulette wheel method // function f(x) = 21.5+x*sin(4*pi*x)
PID-mcc-control-with-algorithme-genetic
- control of dc machine with PI and optimize performance of machine with algorithme genetic
eb001
- 复化三点Gauss-lengend公式求pi,用MATLAB编写的遗传算法路径规划,实现六自由度运动学逆解算法。- Complex of three-point Gauss-lengend the Formula pi, Genetic algorithms using MATLAB path planning, Six degrees of freedom to achieve inverse kinematics algorithm.