搜索资源列表
语法分析之左递归实验
- 此为编译原理实验报告 学习消除文法左递规算法,了解消除文法左递规在语法分析中的作用 内含 设计算法 目的 源码 等等.... 算法:消除左递归算法为: (1)把文法G的所有非终结符按任一种顺序排列成P1,P2,…Pn 按此顺序执行 (2)FOR i:=1 TO n DO BEGIN FOR j:=1 DO 把形如Pi→Pjγ的规则改写成 Pi→δ1γ δ2γ … δkγ。其中Pj→δ1 δ2 … δk是关于Pj的所有规则; 消除关于Pi规则的直接左递归性 END (3)化简由(2)所得的文法。即
pj
- 一种基于语义内积空间模型的文本聚类算法,这种算法有很好的效率,拿出来和大家分享下-A semantic-based model of inner product space the text clustering algorithm, this algorithm has good efficiency, and to share out under the
BSplineWavelet
- generates the synthesis matrices Pj and Qj for endpoint-interpolating B-spline wavelets
PIM-fuzzy-c-means
- Partition index is a measure ofvalidity similar to partition coeGcient, based on using Pj = ci=1 (uij)m as a measure ofhow well the jth data point has been classi- 2ed. The closer a pixel is to a codebook entry, the closer Pj is to one. Ifa
pj
- 图像配准的简单运行,有坐标轴,获取特征点(image registration of simple operation, coordinate axis, access to feature points)
3-12
- 双调旅行售货员问题 问题分析:给定平面上n个点,p[i]=(x[i],y[i]),I=1,2,3,…,n。点集p1,p2..pi按x坐标排序 t(i)表示点{p1,p2...pi}的最短双调TSP回路,则有, t(i) = min{t(k) + D(k,i) + d(k-1,i) - d(k-1,k)} ,1<k<i t(1) = 0,t(1) = 2d(1,2) d(i,j)为pi,pj之间的距离 D(i,j)为pi,pi+1,pi+1...pj之间累加距离 设s(i