搜索资源列表
Adaptive-Embedding-Dimension
- 嵌入维数自适应最小二乘支持向量机 状态时间序列预测方法 Condition Time Series Prediction Using Least Squares Support Vector Machine with Adaptive Embedding Dimension 针对航空发动机状态时间序列预测中嵌入维数难于有效选取的问题, 提出一种基于嵌入维数自适应 最小二乘支持向量机( L SSVM ) 的预测方法。该方法将嵌入维数作为影响状态时间序列预测精度的重要参
NSGA-III
- 测试可以跑,根据自己情况修改下函数即可. NSGA-III 首先定义一组参考点。然后随机生成含有 N 个(原文献说最好与参考点个数相同)个体的初始种群,其中 N 是种群大小。接下来,算法进行迭代直至终止条件满足。在第 t 代,算法在当前种群 Pt的基础上,通过随机选择,模拟两点交叉(Simulated Binary Crossover,SBX)和多项式变异 产生子代种群 Qt。Pt和 Qt的大小均为 N。因此,两个种群 Pt和 Qt合并会形成种群大小为 2N 的新的种群 Rt=Pt∪Qt。 为了