搜索资源列表
vbC12
- 用VB实现解常微分方程组 包括定步长四阶龙格-库塔法、自适应变步长的龙格-库塔法、改进的中点法、外推法等-VB solution of ordinary differential equations including fixed step 4-order Runge - Kutta method, adaptive variable step of the Runge - Kutta method to improve the midpoint of the law, such as ex
solution-of-Differential-equation-group
- 提供了4种解常微分方程组的c++代码:定步长四阶龙格-库塔(Runge-Kutta)法(RK4->RKDUMP); 自适应变步长的龙格-库塔(Runge-Kutta)法(RKQC->ODEINT); 改进的中点法(MMID); 外推法(BSSTEP(RZEXTR(有理函数), PZEXTR(多项式));-provide four kinds of solutions of ordinary differential equations c code : There will be f
EOM
- 拉格朗日插值多项式拟合,牛顿插值多项式,欧拉方程解偏微分方程,使用极限微分求解导数(微分),微分方程组的N=4龙格库塔解法,雅可比爹迭代法解方程AX=B,最小二乘多项式拟合,组合辛普生公式求解积分,用三角分解法解方程AX=B-Lagrange interpolation polynomial fitting, polynomial interpolation Newton, Euler equations partial differential equations, Limit the use
shuzhijifeng
- 数值积分方法类型Model,1=欧拉法,2=二阶龙格库塔,4=四阶龙格库塔-numerical integration methods Model type, a = Euler, 2 = second-order Runge - Kutta, 4 = 4-order Runge - Kutta
Runge-Kutta-4
- 这个程序是利用追赶法解三对角方程组的过程的数值解法程序。-This program is the use of catch-up Solving tridiagonal equations Numerical solution procedure.
marunge4gh
- 1 用途:4阶经典龙格库塔格式解常微分方程y =f(x, y), y(x0)=y0 格式:[x, y]=marunge4(dyfun,xspan,y0,h) dyfun为函数f(x,y), xspan为求解区间[x0, xn], y0为初值, h为步长, x返回节点, y返回数值解 2 用途:用LU分解法解方程组Ax=b -1 Uses: 4-order classical Runge-Kutta solution of ordinary differential
runge-kutta
- 常微分方程的数值解法及仿真 一、 欧拉(Euler)公式 2 二、 龙格-库塔公式 2 1. 二阶龙格-库塔公式 2 2. 四阶龙格-库塔公式 2 三、 一阶常微分方程组的数值解法 2 四、 仿真算例 4 仿真1 应用欧拉法 4 仿真2 应用二阶龙格-库塔法 5 仿真3 应用四阶龙格-库塔法 6 附录 Matlab程序 7 1. 欧拉法程序 7 2. 二阶龙格-库塔法程序 8 3. 四阶龙格-库塔法程序 9 参考文献 10 -runge
CODES
- This file conclude of five codes , four of them in Mathematica program and one in C++. 1. Erk4.nb. this code represent the explicit Runge Kutta method of order four for solving first order ODE. 2. RK45.nb This code represent the Embedded Runge Ku
Runge-Kutta-(4)
- 用四阶Runge-Kutta方法求五阶微分方程-The fourth-order Runge-Kutta method and the fifth-order differential equations
higher-order-Runge-Kutta
- 龙格库塔4阶法处理捕食者与被捕食者生存数量关系-higher order Runge-Kutta Lotka-Volterra equations
Runge-Kutta-4
- Runge-Kutta 4阶算法C++实现-Runge-Kutta 4
matlab-3-Runge-Kutta-4-lRunge-Kutta
- 三、四阶龙格库塔算法编程方法,matlab自带效果类似,仅供参考-Third, fourth-order Runge-Kutta algorithm programming method, similar to the effect matlab comes for reference only
Runge-Kutta-4
- 用Runge-Kutta 4阶算法对初值问题按不同步长进行求解,用于观察稳定区间的作用。-With a four order Runge- Kutta algorithm for initial value problems in asynchronous long, used to observe stability range.
Lorenz_random_rk4.c.tar
- Runge Kutta 4 for Lorenz System with random initial data
Runge-Kutta
- 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。本程序为4阶龙格-库塔法的matlab文件,用于求解微分方程。-Runge- Kutta (Runge-Kutta) method is a widely used in engineering high-precision single-step algorithm. This program is a 4-order Runge- Kutta method matlab file for solving diff
4-Runge-Kutta-method
- 自己用matlab写的四阶龙格库塔方法程序-four Runge-Kutta method by matlab
RK4
- runge kutta 4 matlab code
4(Runge-kutta)MATLAB
- 龙格库塔算法解微分方程的名声显赫,将算法的理论、MATLAB实现以及ode45验证总结-Runge Kutta algorithm for solving differential equations of fame, theory, MATLAB algorithm and ode45 verification summary
4-runge-kutta
- 基于VisioC++的四阶龙格库塔算法的实现,给出了具体实现过程。-The realization of the four order Runge Kutta algorithm based on VisioC++, gives the concrete realization of the process.
ytcz3
- 三次样条插值和Runge-Kutta 4阶算法,输入任意函数,调用该函数,可得结果(Three cubic spline interpolation, input any function, call the function, can get the result)