搜索资源列表
Professor-Lu-Wusheng-lecture
- 陆吾生教授是加拿大维多利亚大学电气与计算机工程系的教授。此课件为其在国内大学短期精品课程的课件。包含最优化问题求解,压缩感知方法及其在稀疏信号和图像处理中的应用(压缩、重构、降噪等)。-Professor Lu Wusheng University of Victoria, Canada Professor of Electrical and Computer Engineering. The courseware for the University in the domestic short
A-REMARK-ON-COMPRESSED-SENSING
- 一篇关于压缩感知的经典文章,压缩感知(Compressed sensing,简称CS,也称为Compressive sampling)理论异于近代奈奎斯特采样定理,它指出:利用随机观测矩阵可以把一个稀疏或可压缩的高维信号投影到低维空间上,然后再利用这些少量的投影通过解一个优化问题就可以以高概率重构原始稀疏信号,并且证明了这样的随机投影包含了原始稀疏信号的足够信息。-A classic article on compressed sensing, compressive sensing (Comp
fbmp_v1_3.tar
- 经典的稀疏重构算法,即快速贝叶斯追踪算法,恢复出的信号精度高,恢复算法复杂度低-Classic sparse reconstruction algorithm, namely the bayesian tracking algorithm quickly, to restore the signal of high precision, low recovery algorithm complexity
Compressed-sensing-HK
- 压缩感知信号重构的算法,用于学习,先稀疏,再观测系数,最后重建- compression algorithm used to study and review, thin, and observation of the reconstruction and