搜索资源列表
Matrix
- 很好用的有关矩阵的各种操作,包括求逆,特征值,特征向量,svd分解等-good part of the matrix of various operations including inverse, eigenvalues, eigenvectors, svd decomposition, etc.
NMF
- LNMF是基于“局部”非负矩阵分解生成特征空间的算法,而NMF是基于非负矩阵分解。-Matrix is based on a "partial" non-negative matrix factorization generation features space algorithm, which is based on the NMF non-negative matrix factorization.
MMatrixxa
- 关于矩阵运算的各种数值算法,包括实(复)矩阵求逆,对称正定矩阵与托伯利兹矩阵阵的求逆,线性方程组的常用解法,矩阵的各种分解方法,特征向量与特征值的求解等等。 -Numerical algorithms on a variety of matrix operations, including real (complex) matrix inversion symmetric positive definite matrix inverse matrix array with Tuobo Lee
POD
- 对数据进行本征正交分解,是分析周期性本质特征的重要算法-Data orthogonal decomposition is an important characteristic of algorithm analysis cyclical nature
lcdyt
- 鉴于LCD方法存在的问题,本文提出了一种基于互相关匹配端点延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,简称CELCD),由于LCD分解原理是依据信号的局部极值点信息不断进行筛分信号,在信号分解时需要先确定信号的局部极值点,而信号的两个端点可能不是极值点,因此在信号两端点就会出现虚假成分,且该现象随着分解的进行向数据内部扩散,产生端点效应,导致分解