搜索资源列表
shuzhifenxi
- 数值分析算法:四阶龙格库塔算法、 平方解方程组算法等
jsff2
- 计算方法程序,包括高斯列主元法,复化simpson,标准四阶龙格库塔,Seidel迭代,Romberg算法
adms
- 阿当姆斯显式和隐式求解方法,用四阶龙格库塔作为起始,然后运用四阶阿当姆斯算法求解初值问题。主要程序包含在test2.cpp中,方法简单易懂。编译环境VC2010-Adam James explicit and implicit method for solving fourth-order Runge-Kutta as a start, then use the fourth-order A Williams algorithm for solving initial value problem
LyapunovspectrumforLorenzattractor
- 附件中是我用Fortran写的lorenz混沌吸引子的lyapunov指数谱产生程序。包括三部分内容:如何产生lorenz吸引子,详细注释,如何计算lyapunov指数谱。 需要的话也可以单独提取子程序中的四阶龙格库塔算法。 希望有所用。-Annex is written in Fortran I used the Lorenz chaotic attractor of lyapunov index spectrum generation process. Includes three
chaos-simulate
- Flash制作的混沌仿真程序,用四阶龙格库塔算法画出了洛伦兹吸引子,动态显示-Chaos Flash simulation program produced by fourth-order Runge-Kutta algorithm to draw the Lorenz attractor, dynamic display
shuzhijifen
- 基于VC环境的面向方程的数值积分算法,本程序以卫星在空中运行的运动方程为例,采用四阶-龙格库塔算法解微分方程,以bmp图片给出输入参数和界面,很好的阐述了如何利用四阶-RK解微分方程-VC-based environment equation-oriented numerical integration method, this program runs the satellite equations of motion in the air, for example, using fourth
35
- 四级四阶龙格库塔格式,求解微分方程的好算法。-Four fourth-order Runge-Kutta format, a good algorithm for solving differential equations.
calculation
- 典型数值计算方法。包括:经典四阶龙格库塔法、高斯列主元法、牛顿法、龙贝格、三次样条插值算法、M次多项式曲线拟合、二分法、不动点法、霍纳法、牛顿-拉弗森迭代等十项典型算法的算法流程及C源代码和例子。-Typical numerical calculation. Include: classical fourth order Runge-Kutta method, Gauss main-element method, Newton method, Romberg, cubic spline inte
4longge
- 数值计算中的四阶龙格库塔算法,在保证精度的情况下又具有较好的计算速度,是工程上常采用的算法-Numerical calculation of the fourth-order Runge-Kutta algorithm to ensure accuracy in the case of the calculation but also has good speed, is often used in the algorithm works
rk_variable_step
- 变步长四阶龙格库塔源码,基本的数值算法,希望有帮助-Variable step fourth-order Runge-Kutta source
rk_4
- 四阶龙格-库塔算法的matlab程序实现-Fourth-order Runge-Kutta algorithm matlab program
RGKT
- 实现四阶龙格库塔算法,可以自由设置时间区间和步长。-Fourth-order Runge-Kutta algorithm can be free to set the time interval and the step size.
Numerical-Analysis
- 数值分析中的四种插值方法: 拉格朗日差值公式 龙贝格算法 三次样条插值 四阶龙格库塔方法 内附有详细算法解析文档-Numerical analysis of four interpolation methods: Lagrangian difference equation Romberg algorithm Cubic spline interpolation Fourth-order Runge-Kutta method Encl
Ruger-Kutta
- 四阶龙格库塔算法C语言求解常微分方程,开发运行环境Visual-C-Fourth-order Runge-Kutta algorithm for solving ODE C language, development environment Visual-C++ run
Numerical-solution-of-ODE
- 常微分方程的数值解法:四阶龙格-库塔方法的算法,相应的函数子程序,解决实际问题-Numerical solution of ordinary differential equations: algorithm of the fourth-order runge-kutta method , the corresponding function subroutine, solving practical problems with the method
Runge_Kutta
- 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。数值计算中经常用到,四阶龙格库塔经常被称为“RK4”或者就是“龙格库塔法”。-Runge- Kutta (Runge-Kutta) method is a widely used in engineering high-precision single-step algorithm. Due to the high
RungKutta
- 四阶龙格库塔算法。deltaT为积分步长,XX为X_k,X_next为X_k+1,Control以及Param为用户可选参数。微分方程在deriv中定义。-RungeKutta,where deltaT refers to the step size, XX refers to X_k, X_next refers to X_k+1, Control and Param is user defined parameters. The differential equation should be
4-runge-kutta
- 基于VisioC++的四阶龙格库塔算法的实现,给出了具体实现过程。-The realization of the four order Runge Kutta algorithm based on VisioC++, gives the concrete realization of the process.
RungeKutta
- 给出了四阶龙格库塔算法求解微分方程的具体过程和实现方法。- Given the detailed process and method of four order Runge Kutta algorithm for solving differential equations.
longe1
- 用四阶龙格库塔算法求解微分方程的具体过程和实现方法。- With the detailed process and method of four order Runge Kutta algorithm for solving differential equations.