搜索资源列表
curvefit_C_edition
- c语言版的多项式曲线拟合。 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合,p<= 10 x,y 的第0个域x[0],y[0],没有用,有效数据从x[1],y[1] 开始 nNodeNum,有效数据节点的个数。 b,为输出的多项式系数,b[i] 为b[i-1]次项。b[0],没有用。 b,有10个元素ok。-c language version of the polynomial curve fitting. Using least-squares met
polyfit
- 曲线拟合程序 多项式相关系数的计算方法(多项式形式1) 多项式相关系数的计算方法(多项式形式2) 最小二乘法曲线拟合 三次样条插值(自然边界条件)-polynomial curve fitting procedures correlation coefficient is calculated (the form of a polynomial) polynomial coefficient of correlation Methods (polynomial form 2
PolyFitSingle
- //=== === === === === === === = //函数说明 //函数名称:PolyFit //函数功能:最小二乘法曲线拟合 //使用方法:double *x ---- 存放n个数据点的X坐标 // double *y ---- 存放n个数据点的Y坐标 // int n -------- 给定数据点个数 // double *a ---- 返回m-1次拟合多项式的m个系数 // int m -------- 拟合多项式的项数,即拟合多项式的
曲线拟合
- (1)利用多项式拟合的两个模块程序求解下题: 给出 x、y的观测值列表如下: x 0 1 2 3 4 5 y 2.08 7.68 13.8 27.1 40.8 61.2 试利用二次多项式y=a0+a1x+a2x2进行曲线拟合。 (1)多项式拟合方法:假设我们收集到两个相关变量x、y的n对观测值列表: x x0 x1 x2 x3 x4 x5 y y0 y1 y2 y3 y4 y5 我
CurveFit_Poly
- 多项式曲线拟合 任意介数 Purpose - Least-squares curve fit of arbitrary order working in C++ Builder 2007 as a template class, using vector<FloatType> parameters. Added a method to handle some EMathError exceptions. If do NOT want to use thi
Curve_fitting_of_algebra_poiynomial_and_least_squa
- 代数多项式曲线拟合与最小二乘法PDF文档
多项式拟合曲线
- 应用一般多项式拟合曲线
multifit
- 功能:离散试验数据点的多项式曲线拟合 调用格式:A=multifit(x,y,m) 其中:x: 试验数据点的x坐标向量 Y: 试验数据点的y坐标向量 m: 拟合多项式的次数 -Functions: discrete experimental data points, the polynomial curve fitting call format: A = multifit (x, y, m) where: x: experimental data points, x
FitCurve
- vc++实现数值拟合与逼近计算方法
grm
- 多项式曲线拟合C++Templete实现-Polynomial curve fitting C++ Templete achieve
srir
- 最小二乘法——一般多项式拟合曲线,并以x-eexp(-x) 0<=x<=2 ,为例进行拟合-Least square method- general polynomial fitting curve, and x-eexp (-x) 0 < = x < = 2, as an example, fitting
PolyFit
- 任意阶的多项式曲线拟合方程,附三角maxtix分解-polynomial curve fitting, and triangularity decomposition(LU decmposition)
Project1
- 用VB编写的多项式拟合程序 Public Function funPolynomial(Num As Long, x() As Single, y() As Single, Degree As Integer, AA() As Single) As Long 多项式曲线拟合 y=a0+a1*x+a2*x^2+an*x^n Num为输入数据点个数 x()为输入数据点横坐标组成的数组 y()为输入数据点纵坐标组成的数组 Degree为要拟合的多项式曲线次数 A
suanfa4
- 最小二乘法的多项式曲线拟合,在数值分析中对误差分析使用的非常多!-equation solver
pp1
- 一个二次多项式曲线拟合算法,功能一般够用了,看明白算法原理应该就可以了-A quadratic polynomial curve fitting algorithm, function normally good enough, look to be able to understand the principle of the algorithm
calculation
- 典型数值计算方法。包括:经典四阶龙格库塔法、高斯列主元法、牛顿法、龙贝格、三次样条插值算法、M次多项式曲线拟合、二分法、不动点法、霍纳法、牛顿-拉弗森迭代等十项典型算法的算法流程及C源代码和例子。-Typical numerical calculation. Include: classical fourth order Runge-Kutta method, Gauss main-element method, Newton method, Romberg, cubic spline inte
CurFit-Dichotomy
- VS2010环境,C++代码实现的:最小二乘法的多项式曲线拟合,二分法与牛顿法求多项式的解。代码清晰,可简单修改使用。经自己测试正确。-VS2010 environment, C++ code to achieve: the method of least squares polynomial curve fitting, the dichotomy Newton method for the solution of the polynomial. The code is clear and s
LeastSquare
- N次多项式曲线拟合,有界面,可随时设置多项式阶次。-N order polynomial curve fitting, the interface can be set at any time polynomial times.
Language
- 程序实现线性插值、抛物插值、牛顿多项式插值、等距节点插值、最小二乘法的曲线拟合对函数进行近似(The function is approximated by linear interpolation, parabolic interpolation, Newton polynomial interpolation, equidistant node interpolation, and least square curve fitting.)
PolynomialCurveFitting
- 基于python的多项式曲线拟合,本程序以1 3 5 9次为例子。(Based on the polynomial curve fitting of python, this program takes 1 3 5 9 times as an example.)