搜索资源列表
gaussjor
- 全主元高斯-约当消去法,解线性方程组,内含函数以及调用例子-all PCA Gauss-Jordan elimination method, the solution of linear equations, functions and includes examples Call
NumAna_GaussElim
- 这四个程序分别为高斯消去法、列主元消去法、全主元消去法解线性方程组和Gauss-Jordan消元法求矩阵的逆。 程序采用MATLAB语言开发,并在MATLAB6.5下测试通过。
Gauss
- 本算法为全选主元高斯消去法,用于线性代数方程组的求解
det
- 用全选主元高斯(Gauss)消去法计算n阶方阵的行列式值。
gauss
- 采用全选主元的高斯消去法解线性方程组,方程组的阶数不限,只需在主函数里给定阶数以及系数即可
chenagaus
- 求解大型稀疏方程组的全选主元高斯-约当消去法--返回零表示原方程组的系数矩阵奇异,返回的标志值不为零,则表示正常返回。-solving large sparse linear system-wide elections PCA Gauss-Jordan elimination method -- to return to the original equation is expressed by the coefficient matrix, a sign of the return value
xxfc
- 全主元高斯约当消去法 2.LU分解法 3.追赶法 4.五对角线性方程组解法 5.线性方程组解的迭代改善 6.范德蒙方程组解法 7.托伯利兹方程组解法 8.奇异值分解 9.线性方程组的共轭梯度法 10.对称方程组的乔列斯基分解法 11.矩阵的QR分解 12.松弛迭代法-PCA-wide Gauss Jordan elimination method 2.LU decomposition method 3. To catch up with law 4.
6GJDN
- 用全选主元高斯—约当消去法求解实系数方程组-Select All PCA with Gauss- Jordan elimination method to solve real coefficient equations
gaussQ
- 程序:全主元Gauss消去法 过程:gaussq(aa,bb,xx,n,sgn) 作用:aa为系数矩阵,bb为右端向量,xx为解向量,n为方程阶数,sgn为标识符,1表示计算正常进行,0表示计算失败 方程形式为:aa(n,n)*x(n)=bb(n)-Procedure: All the main element Gauss elimination process: gaussq (aa, bb, xx, n, sgn) Role: aa for the coefficient mat
Gauss
- 用全选主元Gauss消去法求解线性方程组。其中a是方程组的系数矩阵,b是右端常数向量,并存放最终解向量,n是阶数。-With full pivoting Gauss elimination method for solving linear equations. Where a is the coefficient matrix, b is the right end of the constant vector, and store the final solution vector, n i
Gauss_Jordan
- 全选主元Gauss-Jordan消去法求解线性代数方程组。其中a是方程组系数矩阵,b先存右端的m组常数向量,之后存解向量。n是阶数,m是右端常数向量组数。-Select the main element Gauss-Jordan Elimination method for solving linear algebraic equations. Where a is the coefficient matrix, b right side of m pre-existing group of c
C_J_Complex
- 采用全选主元高斯-约当消去法求解复系数线性代数方程组。其中ar存放复系数矩阵实部,ai存放复系数矩阵虚部。br存放右端复常数向量实部,返回解向量实部;bi存放右端复常数向量虚部,返回解向量虚部。-With full pivoting Gauss- Jordan elimination method for solving linear algebraic equations with complex coefficients. Which ar stored real part of compl
LECalculator
- 3.1 线性方程组类设计 3.2 全选主元高斯消去法 3.3 全选主元高斯-约当消去法 3.4 复系数方程组的全选主元高斯消去法 3.5 复系数方程组的全选主元高斯-约当消去法 3.6 求解三对角线方程组的追赶法 3.7 一般带型方程组的求解 3.8 求解对称方程组的分解法 3.9 求解对称正定方程组的平方根法 3.10 求解大型稀疏方程组的全选主元高斯-约当消去法 3.11 求解托伯利兹方程组的列文逊方法 3.12 高斯-赛德尔
Cjordn0
- 全选主元高斯-诺尔当消去法求解具有多组实常数向量的实系数线性方程组的C语言描述,算法-Full pivoting Gauss- Noel elimination method as a real constant vector with a multiple linear equations with real coefficients of C language descr iption of the algorithm
Gauss---Jordan
- 用全选主元高斯-约当消去法求解实系数方程组和复系数方程组-With full pivoting Gauss- Jordan elimination method to solve equations with real coefficients and complex coefficients of equations
matrix
- 此包包含了众多矩阵处理程序,能够满足矩阵处理的一般要求,由于将各功能分开到不同的“.cpp”文件中,故使用时需要用户自行选取更换合适自己使用的“.cpp”文件。其中,矩阵功能有:输出矩阵、矩阵转置、矩阵归一化、判断矩阵对称、判断矩阵对称正定、全选主元法求矩阵行列式、全选主元高斯(Gauss)消去法求一般矩阵的秩、用全选主元高斯-约当(Gauss-Jordan)消去法计算实(复)矩阵的逆矩阵、用“变量循环重新编号法”法求对称正定矩阵逆、特兰持(Trench)法求托伯利兹(Toeplitz)矩阵逆、
gaodengshuxue
- 可实现的算法:软件说明: 1.全主元高斯约当消去法2.LU分解法3.追赶法4.五对角线性方程组解法5.线性方程组解的迭代改善6.范德蒙方程组解法7.托伯利兹方程组解法8.奇异值分解9.线性方程组的共轭梯度法10.对称方程组的乔列斯基分解法11.矩阵的QR分解12.松弛迭代法第2章插值1.拉格朗日插值2.有理函数插值3.三次样条插值4.有序表的检索法5.插值多项式6.二元拉格朗日插值-The algorithm can be realized: Software Descr iption:
11
- cout< "--- -----请选择方程解答的方案----------" cout<<"\n 1. 克拉默(Cramer)法则" cout<<"\n 2. Gauss列主元消去法" cout<<"\n 3. Gauss全主元消去法" cout<<"\n 4. Doolittle分解法" cout<<"\n 5. 退出" cout<<"\n 输入你的选择:" -cout
GAUSSJ
- 线性方程组的解法 全主元高斯-约当(Gauss-Jordan)消去法 用高斯-约当消去法求解A[XY]=[BI],其中A为n*n非奇异矩阵,B为n*m矩阵,均已知;X(n*m),Y(n*n)未知。-Solution of linear equations the main yuan Gaussian- Jordan (Gauss-Jordan) elimination method Gauss- Jordan elimination method to solve A [XY] = [B
GAUSS-JORDAN
- 用全选主元高斯-约当消去法同时求解系数矩阵相同而右端具有m组常数向量的n阶线性代数方程组-With full pivoting Gauss- Jordan elimination method for solving the same time while the right side has the same coefficient matrix of linear algebraic equations of order n m group constant vector