搜索资源列表
KMeansCSharp
- k均值聚类的c#版本,我从网上找到的c版本经改造而成
KMEANS
- K均值法聚类分析 通过K均值法实现数据的聚类分析
juleifenxi
- 已经调试好的关于聚类分析源代码大全,内容有K均值聚类法,模糊C均值聚类法-failed to translate
kmean
- k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。-k-means algorithm process as follows: First of all, the object data from the n choose k
k_means
- k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-In statistics and machine learning, k-means clustering is a method of cluster analysis which aims to partition n observations into
KMEANS
- 实现k均值聚类算,输出聚类中心和聚类后的分组结果-To achieve k-means clustering calculation, the output cluster centers and cluster grouping of the results of post-
k_means
- 功能完善的、代码简单清晰、注释良好的k均值聚类算法-The function is perfect, code simple clear, annotation good k-means clustering algorithm
K_means
- k均值算法实现聚类,利用数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则-k-means clustering algorithm, the use of the data points to the prototype of a distance as the objective function of optimization, the use of function extremum iteration adjustment rules
src
- k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-k-means algorithm accepts parameters k n and the previously input data is divided into k-clustering objects in order to make
Em
- 使用k均值算法计算聚类的重心,并用EM算法计算各聚类的参数-Using k-means clustering algorithm to calculate the center of gravity, and using EM algorithm to calculate the parameters of each cluster
KMeans
- K-均值聚类算法,属于无监督机器学习算法,发现给定数据集的k个簇的算法。 首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,为每个点找距其最近的质心, 将其分配给该质心对应的簇,更新每一个簇的质心,直到质心不在变化。 K-均值聚类算法一个优点是k是用户自定义的参数,用户并不知道是否好,与此同时,K-均值算法收敛但是聚类效果差, 由于算法收敛到了局部最小值,而非全局最小值。 K-均值聚类算法的一个变形是二分K-均值聚类算法,该算法首先将所有点作为一个簇,然
CPP
- 基于K-均值聚类算法的数据分类方法C++实现-K-means c++
k-means-cluster
- 运用k均值的方法按照一定的规则将离散的数据进行聚类处理-Using k-means method in accordance with certain rules discrete data clustering
123
- 该程序实现K-均值聚类算法达到K-均值聚类的功能,与凝聚算法 最近邻聚类算法达到最邻聚类的功能。 -The program implements K- K- means clustering algorithm to achieve functional means clustering, and cohesion algorithm- nearest neighbor clustering algorithm to achieve the most-neighbor clustering.
k
- 用K均值聚类分析把多组数据分成两类 本程序为给定20组数据(用矩阵A表示)分成B、C两组。-K-means clustering analysis of the multiple sets of data into two categories This program is given 20 sets of data (represented by the matrix A) into B, C groups.
munfai
- 基于K均值的PSO聚类算法,解耦,恢复原信号,PLS部分最小二乘工具箱。- K-means clustering algorithm based on the PSO, Decoupling, restore the original signal, PLS PLS toolbox.
K-means
- K均值聚类方法,用于图像处理,图像分割,提取不同特征。-K-means clustering method
81801236k.matlab
- 利用matlab实现k均值聚类算法,亲自调试通过,对于学习k均值聚类算法有很大帮助(Using MATLAB to achieve K means clustering algorithm, personally debugging through, for learning K mean clustering algorithm is very helpful)
k-means算法2
- 使用该算法可以实现数据的聚类分析,非常适合初学者。(The algorithm can be used to achieve clustering analysis of data, ideal for beginners.)