搜索资源列表
KMeansCSharp
- k均值聚类的c#版本,我从网上找到的c版本经改造而成
pattern_recognition_v6.1
- 完整的模式识别库,包括矩阵运算,各种模式识别算法,如K均值、SVM、RVM、NN、LDA等
fuzzykmeans
- 数据挖掘算法很多,其中模糊k均值算法是目前使用比较多的分类方法
KMEANS
- K均值法聚类分析 通过K均值法实现数据的聚类分析
kjunzhi
- 通过这个源代码可以有效的实现k均值算法的实现与解决。
k均值
- k均值分类实现
juleifenxi
- 已经调试好的关于聚类分析源代码大全,内容有K均值聚类法,模糊C均值聚类法-failed to translate
K-mean
- K均值算法: 给定类的个数K,将N个对象分到K个类中去, 使得类内对象之间的相似性最大,而类之间的相似性最小-K-means algorithm: the number of a given type of K, will be assigned to N objects of category K go, making the object category similarity between the largest, while the category of the simi
KMEANS
- 实现k均值聚类算,输出聚类中心和聚类后的分组结果-To achieve k-means clustering calculation, the output cluster centers and cluster grouping of the results of post-
200732590038
- 计算K均值分类的方法-Calculate K mean classification method. . . . . . . . . . . . . . . . . .
k_algorithm
- K均值算法的C实现,有兴趣的可以下过去看一下-K means algorithm C to achieve, are interested can look under the past
Kjunzhi
- 老师布置的作业,另一种K均值的算法,对数据比较多的分类效果较好。-Teacher assignments, and the other K-means algorithm, the classification of data more effective.
k_means
- 功能完善的、代码简单清晰、注释良好的k均值聚类算法-The function is perfect, code simple clear, annotation good k-means clustering algorithm
FCM
- 模糊C均值(模糊K均值)实现代码-Fuzzy c-means algorithm (fuzzy k-means) to implement code!!!!!!!
K_means
- k均值算法实现聚类,利用数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则-k-means clustering algorithm, the use of the data points to the prototype of a distance as the objective function of optimization, the use of function extremum iteration adjustment rules
k-means-cluster
- 运用k均值的方法按照一定的规则将离散的数据进行聚类处理-Using k-means method in accordance with certain rules discrete data clustering
k
- 用K均值聚类分析把多组数据分成两类 本程序为给定20组数据(用矩阵A表示)分成B、C两组。-K-means clustering analysis of the multiple sets of data into two categories This program is given 20 sets of data (represented by the matrix A) into B, C groups.
K-means
- K均值聚类方法,用于图像处理,图像分割,提取不同特征。-K-means clustering method
k-means算法2
- 使用该算法可以实现数据的聚类分析,非常适合初学者。(The algorithm can be used to achieve clustering analysis of data, ideal for beginners.)