搜索资源列表
kMean
- clustering的经典k-mean算法源程序,VB代码-clustering k-mean algorithm, in VB
kmean
- k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。-k-means algorithm process as follows: First of all, the object data from the n choose k
k_means
- k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-In statistics and machine learning, k-means clustering is a method of cluster analysis which aims to partition n observations into
NormalDistribution
- Intention based scoring (IBS) is a scoring system, its goal is to provide a score that more accurately assesses a student’s ability to solve a composition problem, and therefore assess direct effects of the student s programming ability. This process
KMean
- KMEAN C# In data mining, k-means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean. This results in a partitioning of the data sp
K_mean_clustering
- this code is about k mean clustering in Matlab
kmeans
- kmeans methode (k-means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean)
src
- k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-k-means algorithm accepts parameters k n and the previously input data is divided into k-clustering objects in order to make
81801236k.matlab
- 利用matlab实现k均值聚类算法,亲自调试通过,对于学习k均值聚类算法有很大帮助(Using MATLAB to achieve K means clustering algorithm, personally debugging through, for learning K mean clustering algorithm is very helpful)