搜索资源列表
qiujie
- 【问题描述】已知线性方程组AX=B,求解该方程组。参考算法: 消去法:将列向量B加到矩阵A的最后一列,构成增广矩阵AB。对AB进行下列三种初等变换,使原矩阵A的部分的主对角线上的元素均为1,其余元素均为0,则原列向量B的部分即为X的值: 1. 将矩阵的一行乘以一个不为0的数 2. 将矩阵的一行加上另一行的倍数 3. 交换矩阵中两行的位置 - [ Question descr iption ] known system of linear equations AX=B, s
ABQ
- 计算机图论基础,求解关联矩阵A B Q 是《网络理论》课程作业-computer graph theory basis for correlation matrix A B Q "network theory" courses operation
c++_class_matrix
- 完整的矩阵类,实现的功能如下: 方阵、拷贝构造、初始化,分配矩阵数据的内存,并全部置0、将方阵初始化为方阵、设置矩阵个元素的值、得到知道元素的值、获取矩阵的列数、获取矩阵的行数、获取矩阵的数据、获取指定行的向量、获取指定列的向量、重载运算符 = 、重载运算符 ==、重载运算符 !=、重载运算符 +、重载运算符 - 重载运算符 数乘*、重载运算符 矩阵相乘* 矩阵转置。-integrity of the matrix type, function as follows : Lineup
Matrix.operation
- 用户输入两个矩阵的维数和元素,选择加减乘三种运算方式中的一种,程序将显示运算结果。采用动态分配数组空间。初学C++写的,简单易懂。-user input two-dimensional matrix of elements and a few select modified by the three operators a way, Operational procedures will show results. Dynamic array allocation of space. Novic
use_LU_for_equations
- 用杜利特尔分解法求解方程组,对矩阵A分解成为两个矩阵U和L,再应用矩阵U和L来达到求解方程组的目的-Doolittle decomposition method used to solve equations, the matrix A decomposed into two matrix U and L, U matrix is applied to achieve and L for the purpose of equations
t2_3
- 本题采用的计算方法为:矩阵的 分解和Cholesky分解。根据Gauss消去法的的矩阵意义,可以将矩阵A分解为一个单位下三角矩阵与一个上三角矩阵的乘积即:即矩阵的LU分解A=LU,进而可以分解为: 的形式。当A为对称矩阵时,A可分解为: 的形式。-that the use of the method of calculating : matrix decomposition and Cholesky decomposition. According to the Gauss eliminatio
Matrix
- 一个解线性超定方程组的算法,是用C语言写的,简单易懂,而且速度还挺快的。-a solution-linear equations of the algorithm is written in C language, easily understood, but the speed It's fast.
matlabmatrix
- 1) Write a function reverse(A) which takes a matrix A of arbitrary dimensions as input and returns a matrix B consisting of the columns of A in reverse order. Thus for example, if A = 1 2 3 then B = 3 2 1 4 5 6 6 5 4 7 8 9 9 8 7 Writ
a-1
- 求某矩阵的逆矩阵-find the inverse matrix of a matrix
agaus
- 全选主元高斯消去法agaus.c--返回零表示原方程组的系数矩阵奇异,返回的标志值不为零,则表示正常返回。-entire election PCA Gaussian Elimination agaus.c --return to the original equation is expressed by the coefficient matrix, a sign of the return value is not zero, then returned to normal.
chenagaus
- 求解大型稀疏方程组的全选主元高斯-约当消去法--返回零表示原方程组的系数矩阵奇异,返回的标志值不为零,则表示正常返回。-solving large sparse linear system-wide elections PCA Gauss-Jordan elimination method -- to return to the original equation is expressed by the coefficient matrix, a sign of the return value
Matrix.设计一个造成矩阵类Matrix
- 设计一个造成矩阵类Matrix,包含一个元素类型为int的二维数组,分别设计一个静态方法和实例方法把矩阵转置,分别设计静态方法和实例方法实现二个矩阵相加、相乘。重写方法toString(),使其能输出此矩阵。,Caused by the design of a matrix of type Matrix, contains an element type for the two-dimensional array of int, respectively, to design a static
Matrix
- c++写的矩阵类,实现矩阵的初始化,加、减、乘、除、转置-a Matrix Class.including matrix operations such as add , subtract , multiply , divide and transpose
Matrix
- 关于矩阵运算的各种数值算法,包括实(复)矩阵求逆,对称正定矩阵与托伯利兹矩阵的求逆,线性方程组的常用解法,矩阵的各种分解方法,特征向量与特征值的求解等等。-Matrix operations on a variety of numerical algorithms, including the real (complex) matrix inversion,托伯利兹symmetric positive definite matrix and matrix inversion, linear eq
Matrix
- 一些矩阵运算的函数,包括两个矩阵相加,两个矩阵相减,两个矩阵相乘,矩阵复制,矩阵求逆的全选主员高斯-约当法,矩阵的三角分解(LU分解),求Hessenberg矩阵全部特征根的QR法,约化一般实矩阵为Hessenberg矩阵的初等相似变换-A function of a number of matrix operations, including the sum of two matrices, subtract two matrices, the two matrices, matrix dup
Matrix
- 一个通用的对矩阵进行操作的类,主要包括:实(复)矩阵的加减、求逆、求秩、行列式求值以及矩阵的乔里斯基分解、三角分解等。-A general class of matrix operations, including: real (complex) matrix addition and subtraction, inverse, seeking the rank, determinant evaluation and matrix Qiaolisiji decomposition, triang
Matrix
- Matrix (TRANSPOSE , INVERSE , MATRIX INVERSION USING GAUSS-JORDAN REDUCTION AND Calculates the multiplication of two matrix A and B such that C=AB.
matrix
- //--显示矩阵,形参m为行,n为列 void MatrixDisplay(double *A,int m,int n) //--求矩阵转置,形参m为行,n为列,A转置后存为B void MatrixInverse(double *A,double *B, int m,int n) //--求矩阵相乘,A矩阵为[m,p],B矩阵为[p,n],C为[m,n] void MatrixMultiply(double *A,double *B,double *C ,i
Matrix-Chain_JAVA
- Matrix Chain Multiplication is perhaps the quintessential example of dynamic programming. The problem can be stated as follows: given a chain <A1, A2,..., An> of n matrices, where for i = 1, 2,...,n, matrix Ai has dimension pi-1 x pi, fully par
Matrix
- 稀疏矩阵的行数、列数和非零元素的个数 将稀疏矩阵 a转置,结果在稀疏矩阵 b中-The number of rows of sparse matrix, the number of columns and the number of nonzero elements of sparse matrix a transposition, results in the sparse matrix b