搜索资源列表
runge-kutta
- 龙格-库塔法是数值计算的重要方法 本例子简明扼要,浅显好懂-Runge - Kutta numerical method is an important method to the example of concise and simple to understand
包括runge-kutta法仿真
- 我们的大作业,包括runge-kutta法仿真,0-1分布,反变换的C语言原程序,还有结果图,应该是每问题的
Runge-Kutta
- Runge-Kutta-Fehlberg method
运用Runge-Kutta法数值求解常微分方程
- fortran90程序,运用Runge-Kutta法数值求解常微分方程的程序,非常适用,包括源代码、一个算例和输出程序,fortran90 procedures, the use of Runge-Kutta method for numerical solution of ordinary differential equations of the process, is very applicable, including source code, a numerical example a
WENO
- 用于CFD的,二维WENO格式的求解器,NS方程,二阶龙格库塔方法。-2D solver for NS equation using WENO method, 2 order Runge-kutta mehtod.
runge-kutta4
- 利用四阶runge-kutta法,计算铅垂面内导弹弹道轨迹的一个例子。-Using fourth-order runge-kutta method, calculation of vertical-plane trajectory of the missile an example
RK_4
- 求解时滞微分方程的龙格库塔方法!用matlab编写的。-Solving Delay Differential Equations Runge-Kutta methods! Prepared using matlab.
jie
- 用四阶Runge-Kutta法解延迟微分方程组,用到的朋友看一下啊-Using fourth-order Runge-Kutta method for delay differential equations, a friend used to look at ah
vsrk4
- 龙格-库塔(Runge-Kutta)法是一种不同的处理,作为多级方法为人们所知。 它要求对于一个简单的校正计算多个 f 的值。 这里是变步长四阶龙格库塔法的c程序-Runge- Kutta [Runge-Kutta] method is a different treatment, as a multi-stage method for people to know. It requires a simple correction for the calculation of
Runge-Kutta
- 在C++环境下,实现用四阶龙格库塔方法解方程组。-In C++ environment, using fourth-order Runge-Kutta method to solve equations.
6Runge-Kutta
- 龙格库塔法解数值积分,如需修改函数可以直接在函数部分修改-Runge-Kutta method of numerical integration solution, for modified function can be modified directly in the function part
Runge
- 使用Newton和三次样条插值,讨论了Runge现象,附件有问题的详细说明-Newton and the use of cubic spline interpolation, discussed the Runge phenomenon, annex a detailed explanation of problem
Problem1
- solve the Vanderpol equation using Runge-Kutta-Gill method
Rung-kutta4th
- 4th order runge-kutta m file
MyDIRK3
- DIRK3 algorithm, the algorithm to be implenmented is the optimal two stage third order accurate Diagnonally Implicit Runge-Kutta method, written DIRD3, for the ODE prolem and diffrentiate equations.
SYStestNew
- C source code for numerical integration and system simulation using the Runge–Kutta methods
runge-kutta
- 常微分方程的数值解法及仿真 一、 欧拉(Euler)公式 2 二、 龙格-库塔公式 2 1. 二阶龙格-库塔公式 2 2. 四阶龙格-库塔公式 2 三、 一阶常微分方程组的数值解法 2 四、 仿真算例 4 仿真1 应用欧拉法 4 仿真2 应用二阶龙格-库塔法 5 仿真3 应用四阶龙格-库塔法 6 附录 Matlab程序 7 1. 欧拉法程序 7 2. 二阶龙格-库塔法程序 8 3. 四阶龙格-库塔法程序 9 参考文献 10 -runge
Runge-KuttaC-plusplus
- 在网上找了许多龙格库塔的算法,但是没一个满意的,所以就自己改进这了这个程序,这是用C++写的,而且里面有一个具体的实例,欢迎学习和探讨。-Internet is a lot of Runge-Kutta algorithm, but not a satisfactory, so we own it this improved procedure, which is written in C++, and there were a concrete example of welcome to le
Runge-kutta
- Runge-kutta for nonlinear ansysis
gsl-runge-kutta
- 利用GSL的库文件,使用runge-kutta算法求解微分方程,包含控制参数的传递。(The method to solve the synamic system via differiatial euqationsbased on the GSL library, including the example how to transfer the control variable in the algorithm.)