搜索资源列表
Strassen矩阵乘法算法 C++程序源码
- Strassen矩阵乘法算法 C++程序源码 V.Strassen在1969年发表了一个算法,将计算两个n阶方阵的乘积的时间复杂性降低到了o(nlog27),被誉为“在代数复杂性理论中最激动人心的结果”。该算法主要适用于方阵的乘法。-Strassen algorithm for matrix multiplication C++ program source V. Strassen published in 1969, an algorithm to compute the product of
test
- 设计出的两个任意维数矩阵相乘的三种优化算法,包括矩阵分治和strassen算法-Design of the two matrices of arbitrary dimension of the three optimization algorithms, including matrix algorithm for partition and strassen
strassen
- 矩阵乘法是线性代数运算中最常见的运算,它在科学研究以及工程开发中都具有举足轻重的作用,提高其运算的效率是很多大型的学术研究中的内容,这边论文是分析主要的两个矩阵乘法算法.-Linear algebra matrix multiplication is the most common operation, it is in scientific research and engineering development have a decisive role in raising the effi
strassen
- 1.实现时间复杂度为 Ο (nlg7) strassen矩阵乘法 2. 实现时间复杂度为 Ο(n3) 常规矩阵乘法 3. 能随机生成矩阵 4. 分析比较不同输入规模下的strassen算法与常规矩阵乘法的运行时间-1. To achieve the time complexity of Ο (nlg7) strassen matrix multiplication 2. To achieve the time complexity of Ο (n3) General matrix m
Strassen
- 设A 和 B 是两个n * n阶矩阵,求它们两的乘积矩阵C。这里,假设n是2的幂次方;-N*N matrix
strassen
- 矩阵算法的strassen算法,利用此方法只需执行7次递归的矩阵乘法运算和标量次加法和减法运算。-Matrix algorithm strassen algorithms, using this method only 7 recursive implementation of matrix multiplication and scalar addition and subtraction computation times.
MulMatrix
- 两种方法实现矩阵乘法,一种是strassen矩阵乘法,一种是普通乘法-Matrix multiplication two ways, one is strassen matrix multiplication, one is ordinary multiplication. . .
STRASSEN
- 矩阵乘法是线性代数中最常见的运算之一,它在数值计算中有广泛的应用。若A和B是2个n×n的矩阵,则它们的乘积C=AB同样是一个n×n的矩阵-Matrix multiplication is linear algebra is the most common operation, it is one of the numerical calculation is widely used. If A and B is 2 n* n matrix, then their product C = AB i
Matrix
- Matrix multiplication using Strassen.
strassen.c
- Matrix multiplication using Strassen s algorithm and openmp