搜索资源列表
ARIMA
- ARM 用于数学建模的时间序列 预测问题 -ARM used for mathematical modeling time series prediction problem
spark-timeSeries
- 采用ARIMA模型(自回归积分滑动平均模型)+三次指数平滑法(Holt-Winters),用scala语言实现的在spark平台运行的分布式时间序列预测算法(Using the ARIMA model (autoregressive integral moving average model) + Holt-Winters (Holt-Winters), using scala language to achieve the spark platform to run the distribut
Time_Series_Analysis
- ARIMA算法的Python实现,预测时间序列数据。 附两个数据: AirPassengers UK Traffic flow(The Python implementation of the ARIMA algorithm predicts the time series data. Two data are attached. AirPassengers UK Traffic flow)
arima
- arima - (平稳性检验)根据时间序列的散点图、自相关系数和偏自相关系数、单位根检验(ADF),来判断数据的平稳性; - (平稳化处理)对非平稳的时间序列数据进行差分处理,得到差分阶数d; - (白噪声检测)为了验证序列中有用的信息是否已被提取完毕,如果为白噪声序列,(arima arima -(Stableness test) According to the time series of scatter plots, autocorrelation coefficients and