搜索资源列表
entati
- 非局部加权模糊C均值聚类图像分割Non-locally weighted fuzzy C-means image segmentation-Non-locally weighted fuzzy C-means image segmentation
Multi-class-SVM-Image-Classification
- 基于神经网络的遥感图像分类取得了较好的效果,但存在固有的过学习、易陷入局部极小等缺点.支持向量机机器学习方法,根据结构风险最小化(SRM)原理,表现出很多优于其他传统方法的性能,本研究的基于多类支持向量机分类器的遥感图像分类取得了达95.4 的分类精度.但由于遥感图像分类类别多,所需训练样本较大,人工选择效率较低,为此提出以人工选择初始聚类质心、C均值模糊聚类算法自动标注训练样本的基于多类支持向量机的半监督式遥感图像分类方法,期望能在获得适用的分类精度的基础上有效提高分类效率-Neural ne
FCM
- 模糊C均值聚类(FCM)的matlab代码,包括很详细的注释。适用于图像处理。-Matlab code fuzzy C-means clustering (FCM), including very detailed notes. Suitable for image processing.
PatternRecognition
- (1)Bayes分类 已知N=9, =3,n=2,C=3,问x= 应属于哪一类? (2)聚类 使用c-均值聚类算法在IRIS数据上进行聚类分析 (3)鉴别分析 在ORL或Yale标准人脸数据库上完成模式识别任务。 用PCA与基于核的PCA(KPCA)方法完成人脸图像的重构与识别试验。-(1) Bayes classification Known N = 9, = 3, n = 2, C = 3, x = should ask which cat