搜索资源列表
GTPSO
- 提出一种改进的粒子群优化算法———基于全局劣汰策略的混合粒子群优化算法(GTPSO) 。GTPSO在 保持PSO算法快速收敛的基础上,以郭涛算法(GuoA)的寻优机制确保种群的多样性和算法的坚韧性。数值计 算结果表明,对于高维(维数≥10)复杂非凸多峰函数的数值优化问题, GTPSO算法的计算结果均优于GuoA算 法和粒子群优化算法。-An improved particle swarm optimization algorithm--- poor overall survival
constrain-opt
- 针对工程优化设计问题,提出了基于混沌粒子群算法的工程约束优化问题求解方法。CPSO算法利用混沌搜 索的全局遍历性、随机性和规律性等特点, 引导粒子在全局范围内搜索, 从而克服了传统粒子群算法早熟收敛的缺点。 该算法以种群适应度方差作为粒子群优化算法早熟收敛的判据, 并用惩罚函数法处理违法约束的粒子, 当基本粒子群算 法陷入早熟时, 随机选择粒子群中的部分粒子实施混沌搜索, 直至满足迭代收敛条件为止。CPSO算法能提高种群的多 样性和粒子搜索的遍历性, 从而有效提高了PSO算法的收
Semi-supervised-learning
- 义了一个欧氏距离和监督信息相混合的新的最近邻计算函数,从而将K一均值算法很好地应用于半 监督聚类问题。针对K一均值算法初始质心敏感的缺陷,用粒子群算法的搜索空间模拟聚类的欧氏空间,迭代搜 索找到较优的聚类质心,同时提出动态管理种群的策略以提高粒子群算法搜索效率。算法在UCI的多个数据集 上测试都得到了较好的聚类准确率。-Righteousness of a Euclidean distance and supervision of a mixture of new nearest n
30-cases-in-matlab
- MATLAB智能算法30个案例分析,109页的详细讲解,程序和程序注解,可以直接复制代码。包括遗传算法,基于遗传算法和非线性规划的函数寻优算法,遗传算法工具箱详解及应用,多种群遗传算法的函数优化算法, 基于粒子群算法的多目标搜索算法,基于多层编码遗传算法的车间调度算法,基于遗传模拟退火算法的聚类算法,蚁群算法,支持向量机等等30章。-MATLAB intelligent algorithm 30 case studies, 109 detailed explanations, procedur
2
- 人工蜂群算法是一种较优秀的群体智能算法.尽管产生时间较晚,算法的很多方面(如引导信息素、信息素扩散机制、最优种群大小等)尚需进一步研究,但其性能仍可与现有许多群体智能算法相媲美,如蚁群算法、粒子群算法等.人工蜂群算法现已成为人工智能领域的一个研究热点问题.随着各项研究的不断深入,人工蜂群算法一定能够更多的解决更多实际问题.-Artificial bee colony algorithm Matlab procedures to achieve