搜索资源列表
yichuansuanfacankao
- 遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借 用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性 的提高。这一点体现了自然界中\"物竞天择、适者生存\"进化过程。1962年Holland教授首次 提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方 面,并奠定了坚实的理论基础。 用遗传算法解决问题时,首先要对待解决问题的模型结构 和参数进行编码,一般用字符串表示,这
EGA
- 遗传算法的程序 遗传 算 法 (GeneticA lgorithm,G A)是一种大规模并行搜索优化算法,它模 拟了达尔文“适者生存”的进化规律和随机信息交换思想,仿效生物的遗传方式, 从随机生成的初始解群出发,开始搜索过程。解群中的个体称为染色体,它是一 串符号,可以是一个二进制字符串,也可以是十进制字符串或采用其他编码方式 形成的码串。对父代(当前代)群体进行交叉、变异等遗传操作后,根据个体的 适应度〔fitness)进行选择操作,适应度高的个体有较高的概率被选中并
GA_NEW
- 遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法。和传统搜索算法不同,遗传算法从一组随机产生的初始解,称为“种群(Population)”,开始搜索过程。种群中的每个个体是问题的一个解,称为“染色体(Chromosome)”。染色体是一串符号,比如一个二进制字符串。这些染色体在后续迭代中不断进化,称为遗传。-the availability of genetic algorithm method was proved
GA
- 给定字符串,在字符空间中用遗传算法搜索实现-Given string of space characters used in the realization of genetic algorithm
neural-network-genetic-algorithm-master
- 为了自动学习CNN的深度网络结构,网络结构的数量随着网络中间层数量的增加呈指数增长,这启发我们使用遗传算法有效地遍历这个大的搜索空间。我们首先提出一种编码方法,将每个网络结构表示为一个固定长度的二进制字符串,然后通过生成一组随机个体来初始化遗传算法。在每一代中,我们定义标准的遗传操作(如选择、突变和交叉)来消除弱势个体并产生更具竞争力的个体。(In order to automatically learn the deep network structure of CNN, the number