搜索资源列表
ridgeregresssvm
- 最小二乘支持向量机岭回归函数,可以进行预测和分类-least squares support vector machine regression function Ridge, forecasts and classification
denoise_kpca
- 最小二乘支持向量机岭回归函数,可以进行预测和分类-least squares support vector machine regression function Ridge, forecasts and classification
regression
- 机器学习算法,预测数值型回归,岭回归和逐步线性回归-Machine learning algorithms to predict numerical regression, ridge regression and stepwise linear regression
ridge
- 这段代码可以实现机器学习中的岭回归。自行添加高斯噪声后对每个数据集的七阶多项式用不同的值λ进行岭回归-Perform ridge regression on each dataset with 7th order polynomial with different value λ.Add Gaussian noise.
lasso
- 线性回归里的最小二乘估计,以及应用坐标下降的岭回归和Lasso的回归的python实现(Ridge regression and Lasso regression)
KRR
- 核岭回归算法 输入数据集(需要分开存放训练集和测试集) 利用4重交叉验证法调参 最后输出分类准确率(Kernel ridge regression algorithm Input data set (training set and test set need to be stored separately) Parameter adjustment by 4-fold cross validation Final output classification accuracy)
AdaBoost
- adaboost 集成多个回归算法(线性回归、岭回归、LASSO等)(Adaboost integrates multiple regression algorithms)