搜索资源列表
rsds3
- 为解决高冲突证据下的D-S证据理论失效这一问题,在对已有一些代表性改进方法分析的基础上,提出了一种新的基于最优权重分配的D-S改进算法.
psoandimprovedpso
- 基本粒子群优化算法和改进粒子群优化算法程序,包括:用基本粒子群算法求解无约束优化问题,用带压缩因子的粒子群算法求解无约束优化问题,用线性递减权重粒子群优化算法求解无约束优化问题,用自适应权重粒子群优化算法求解无约束优化问题,用随机权重粒子群优化算法求解无约束优化问题,用学习因子同步变化的粒子群优化算法求解无约束优化问题,用学习因子异步变化的粒子群优化算法求解无约束优化问题,用二阶粒子群优化算法求解无约束优化问题,用二阶振荡粒子群优化算法求解无约束优化问题,用混沌粒子群优化算法求解无约束优化问题,
SAPSO
- 权重改进粒子群算法中的自适应权重法,平衡了PSO算法的全局探索能力和局部改良能力-Weight improved particle swarm algorithm in the adaptive weighting method to balance the global exploration of the PSO algorithm is improved capacity and capacity of local
pso-program
- 各种粒子群算法程序,包含基本粒子群,带压缩因子的粒子群算法,权重改进的粒子群算法,变学习因子的粒子群算法,二阶粒子群算法,混沌粒子群算法以及模拟退火的粒子群算法,功能很强大,经过实测可以直接应用-A variety of particle swarm optimization procedures, including elementary particles group with compression factor of the particle swarm algorithm, the w
SAPSO
- 自适应的粒子群基本算法 里面没有适应度函数 可以自己编写好 然后进行调用.权重改进粒子群算法中的自适应权重法,平衡了PSO算法的全局探索能力和局部改良能力.-This is the basic matlab program of SAPSO
PSO
- 文件包括带压缩因子的粒子群算法,权重改进的粒子群算法,自适应权重法,随机权重法,变学习因子的粒子群算法,异步变化的学习因子,二阶粒子群算法,二阶振荡粒子群算法,混沌粒子群算法,混合粒子群算法,杂交粒子群算法,模拟退火算法-File with compression factor of the particle swarm algorithm, the weight to improve particle swarm optimization, adaptive weighting method,
IET_CV_2010
- 一种改进的背景权重的Meanshift跟踪方法-Robust Mean Shift Tracking with Corrected Background-Weighted Histogram
(IWAPSO)MATLAB
- 改进粒子群优化算法(IWAPSO)的MATLAB源程序,这个是引入权重特征的粒子群优化算法-Improved particle swarm optimization algorithm (IWAPSO) MATLAB source, this is the introduction of weight characteristics of particle swarm optimization algorithm optimization algorithm
(PURPSO)MATLAB
- 改进粒子群优化算法(PURPSO)的MATLAB源程序,这个是引入变化的权重特征的粒子群优化算法-Improved particle swarm optimization algorithm (PURPSO) MATLAB source, the weight of this change is the introduction of characteristics of particle swarm optimization algorithm
Events-new
- 对于传统粒子群算法的改进,加入了均值删除粒子和惯性权重和收敛速度等限制,有效提高了运行速度-the newly pso method of finding the maximum point,let the rate of process rapidly
LinWPSO
- 对典型的粒子群算法的改进,是一类权重改进的粒子群算法,利用新型递减权重法来更新粒子速度和位置,用来解决静态单目标优化问题-It is the improved particle swarm optimization algorithm. It introduced a kind method named new decreasing weight to update the position and velocity of the particle. It can be used for han
SAPSO
- 对粒子群算法的改进,利用一种名为自适应权重粒子的方法来更新粒子速度和位置,用来解决静态单目标优化问题-It is the improved particle swarm optimization algorithm. It introduced a kind method named adaptive weight to update the position and velocity of the particle. It can be used for handling single obj
RandWPSO
- 对粒子群算法的改进,利用一类名为随机权重法来更新粒子的速度和位置,用来解决静态单目标优化问题-It is the improved particle swarm optimization algorithm. It introduced a kind method named random weight to update the position and velocity of the particle. It can be used for handle single objective p
PSO_adaptation
- 权重自适应改进的粒子群算法,只需添加适应度函数即可使用-Adaptive weights improved particle swarm optimization, simply add the fitness function can be used
PSO-LSSVM
- 利用改进PSO算法对LS-SVM进行参数优化,参数 和 的取值范围分别为 和 ,粒子种群数量为 25,迭代次数为 100,惯性权重因子 和 取0.9和0.1,学习因子 和 均取2。-The parameters of PS-SVM are optimized by using the improved PSO algorithm. The range of parameters is 25, the number of particles is 25, the number of iterati
简单PSO
- pso算法的改进与优化,即对粒子群算法惯性权重w与学习因子参数的约束。(pso algorithm is improved and optimized, that is, the constraints of the inertial weight w and the learning factor parameters of the particle swarm algorithm.)
自适应权重的PSO
- 自适应权重的粒子群算法,实现复杂问题的有效求解(Particle Swarm Optimization with Adaptive Weight for Effective Solution of Complex Problems)