搜索资源列表
自适应神经网络在确定落煤残存瓦斯量中的应用
- 落煤残存瓦斯量的确定是采掘工作面瓦斯涌出量预测的重要环节,它直接影响着采掘工作面瓦斯涌出量预测的精度,并与煤的变质程度、落煤粒度、原始瓦斯含量、暴露时间等影响因素呈非线性关系。人工神经网络具有表示任意非线性关系和学习的能力,是解决复杂非线性、不确定性和时变性问题的新思想和新方法。基于此,作者提出自适应神经网络的落煤残存瓦斯量预测模型,并结合不同矿井落煤残存瓦斯量的实际测定结果进行验证研究。结果表明,自适应调整权值的变步长BP神经网络模型预测精度高,收敛速度快 该预测模型的应用可为采掘工作面瓦斯涌
bpnnet_154
- L-M算法。除了动量法(基于梯度下降的训练算法)外,学习率自适应调整策略是BP算法改进的另一种途径,它利用Levenberg-Marquardt优化方法,从而使得学习时间更短。其缺点是,对于复杂的问题,该方法需要很大的存储空间。 -L-M algorithm. In addition to momentum (based on the gradient descent algorithm for training), learning rate adaptive strategy is to i
heapsort
- 堆排序适合于待排序文件中记录较多的情况,因为其主要的时间开销在于建堆和调整堆-HEAPSORT be suitable for sorting paper records more, because the main overhead is the time to build reactors and adjusting the heap
DNNPID
- 神经网络PID的响应速度比常规PID控制要快,而且系统的调整时间很短,能很快达到给定值,系统输出没有超调,并且误差减小的速度也比常规PID快,因此说明神经网络PID的控制效果要优于常规PID控制。-PID neural network response speed faster than the conventional PID control, and adjust the system time is very short, can quickly reach a given value,
adaptive-genetic-algorithm
- 自适应GA SVM 参数选择算法研究Param eter selection algorithm for support vector machines based on adaptive genetic algorithm 支持向量机是一种非常有前景的学习机器, 它的回归算法已经成功地用于解决非线性函数的逼近问题. 但 是, SVM 参数的选择大多数是凭经验选取, 这种方法依赖于使用者的水平, 这样不仅不能获得最佳的函数逼近效果, 而且采用人工的方法选择 SVM 参数比较浪费
ant-colony-algorithm
- 针对车辆的越野路径规划问题,设计了以最少行驶时间为目标的多策略蚁群算法.首先,分析了地形坡度和地表属性对于车辆路径规划的综合影响,通过叠加坡度与粗糙度约束建立了禁忌表 其次,一方面引入了自适应调整策略以提高路径搜索的有效性,另一方面设计了双向搜索策略以增加蚂蚁之间的协作能力和成功路径的搜索机率 另外,还提出了子路径多段交叉策略以提高算法的全局搜索能力和收敛速度,在详细叙述改进算法的步骤之后,优化了算法的部分参数取值 最后,就基本算法和改进算法的性能指标、收敛代数和仿真结果进行了比较与分析.实验结
FXunion.com_ForexNightFoxEA
- Forex NightFox EA,做欧磅15M,下载测试的时候,主要根据不同的平台调整GMT时间。-Forex NightFox EA, do the 15 m pounds, download the test of time, mainly adjust GMT time according to different platforms.