搜索资源列表
Approximate-Entropy-matlab
- 近似熵是系统复杂性测度很有效的一种方法,在医学、机械设备故障的诊断等方面得到广泛应用。近似熵复杂性测度具有计算简便,对时间序列长度等条件要求相对较低等优点,因而更具有实用价值,是水文非线性系统领域中的新型工具。-Approximate entropy is a measure of system complexity, a very effective way, in medicine, the diagnosis of mechanical equipment failures, etc. a
Clustering-Algorithms
- 在众多聚类算法中,基于划分的模糊聚类算法是模式识别中最常用的算法类型之一.至今,文献中仍不断 有关于基于划分的模糊聚类算法的研究成果出现.为了能更为系统和深入地了解这些聚类算法及其性质,本文从改 变度量方式、改变约束条件、在目标函数中引入熵以及考虑对聚类中心进行约束等几个方面,对在 C-均值算法的 基础上得到的基于划分的模糊聚类算法作了综述和评价,对各典型算法的优缺点进行了实验比较分析.指出标准 FCM算法被广泛应用的原因之一是它对数据的比例变化具有鲁棒性,而其他类似的算法对这种
information-theory
- Matlab implementation of various entropy in information theory, including the calculation of self information,信息论中各种熵的matlab实现,其中包括自信息量,互信息量,条件熵,联合熵,冗余度等等的计算
information-calculation
- Matlab implementation of various entropy in information theory, including the calculation of self information,信息论中各种熵的matlab实现,其中包括自信息量,互信息量,条件熵,联合熵
带权重条件熵的属性约简算法
- 粗糙集理论中最重要的内容之一就是属性约简问题,现有的许多属性约简算法往往是基于属性对分类的重要性,如果属性约简的结果能满足用户实际需要的信息,如成本、用户的偏好等,那么约简理论将会有更高的实用价值。基于此,从信息熵的角度定义了带权重的属性重要性,然后重新定义了基于带权重的属性重要性的熵约简算法。最后通过实际例子说明,与基于属性重要性的熵约简算法相比,考虑权重的算法更加符合用户的实际需求。(Attribute reduction is one of the most important conte
李航_统计学习方法
- 《统计学习方法》是计算机及其应用领域的一门重要的学科。《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。(The statistical learning method is an important subject in the field of computer and its application.)