搜索资源列表
GCP(color)
- 该程序是经典得MATLAB应用,关于模拟退火应用中得GCP图着色问题-the program MATLAB is a classic application of simulated annealing applications in the GCP map coloring problem
GCP
- 使用模拟退火思想解决图着色(GCP)问题,使用先看说明文件
ChinaMapColor
- 一般回溯算法,遗传算法等对中国地图各省按四色原理着色
theuseageofSA
- 模拟退火算法应用,有图像着色问题,独立集,最大截,旅行商等问题。
GCP
- GCP(图着色问题)的模拟退火算法应用源码
simulate_anneal
- 用mathlab编写的经典的模拟退火应用程序,包括图着色问题,最大截问题等
simulated annealing
- 模拟退火算法求解经典图论中的图着色问题的源程序-simulated annealing algorithm classic graph coloring map of the source
color1
- 给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点 着一种颜色。是否有一种着色法使G中每条边的2个顶点着不同颜色。这个问题是 图的m可着色判定问题。若一个图最少需要m种颜色才能使图中每条边连接的2个 顶点着不同颜色,则称这个数m为该图的色数。求一个图的色数m的问题称为图的 m可着色优化问题。 -Given an undirected connected graph G, and m kinds of different colors. With thes
programme
- 标准基类程序,可以在进行图着色问题时,作为基类程序应用-Standard-based class program that can progress graph coloring problem, as the base class procedure applied
tuzhuode
- 利用模拟退火法解决图着色问题,画出相应的图形,效果较好-Using simulated annealing to solve the graph coloring problem, draw the appropriate graphics, better
yichuan-c-chengxu
- 遗传算法解决图的着色问题,这里面都是源程序,很有用-Genetic algorithms to solve graph coloring problem, this all source code, very useful
ant_algorithm
- 基于蚁群算法的图的着色问题的研究,毕业论文做的,还是挺好用的-Ant colony algorithm based on graph coloring problem of the studyThesis done, or very good use
GCP
- 图的M着色问题的C/C++实现,给定M后,给出具体着色方案。-M coloring the C/C++ achieve, given M, given the specific coloring.
Map-of-China-coloring-problem
- 基于遗传算法的中国地图着色问题,额外给出省份名称与相邻关系的txt文件和中国地图的jpg图片文件-Map coloring problem based on genetic algorithms, province name is given txt file with neighboring relations, and China map jpg picture file
GCP
- 着色问题,是最著名的NP-完全问题之一。 给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为K个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。其优化版本是希望获得最小的K值。-Coloring problem, is the most famous NP-complete problems. Given an undirected graph G = (V, E), where V is the set of vertices, E is the se
Graph-Coloring(HGA)
- 基于遗传算法和禁忌搜索的启发式算法,提供C++代码,能够高效地解决图着色问题。-The code based on the combination of Genetic Algorithm and Tabu Search can be used to solve the Graph Coloring problem efficiently