搜索资源列表
粒子群优化算法C
- 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域-comparison with the genetic algorithm, the advantages of PSO is simple and easy to achieve without many parameters need to be adjusted. Now it has been widely used function op
粒子群优化PSO程序包(Java,C,VB)
- C语言遗传算法程序包-NO. 11 heredity arithmetic programme packet of c programme language
差别算法matlab源码
- 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation).源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应
PSOGABPDRNN.rar
- 此包含有遗传算法、粒子群算法、BP算法优化对角递归神经网络的MATLAB程序,This includes genetic algorithms, particle swarm optimization, BP algorithm for diagonal recurrent neural network of the MATLAB program
GAPSO.rar
- 遗传粒子群的最新改进算法,随着维度增加效果更好,Genetic Particle Swarm latest improved algorithm, with the increasing dimensions better
algorithms
- 我个人收集的各类智能算法,共有20多个源代码,包括:遗传算法,蚁群算法,粒子群算法,微分进化算法,遗传神经网络算法,粒子群SVM算法,粒子群神经网络算法等混合算法-I collect all kinds of intelligent algorithms, a total of more than 20 source code, including: genetic algorithms, ant colony optimization, particle swarm optimization,
Matlab
- 各类人工智能算法源代码哦,包括蚁群、粒子群、遗传、神经网络-The source code of various artificial intelligence algorithms Oh
pso-bp
- 这是一个采用粒子群算法优化bp神经网络权值的MATLAB程序-This is a particle swarm optimization using neural network weights bp MATLAB program
psoyouhuannyj
- 基于粒子群优化的神经网络训练算法研究论文 摘 要: 本文提出了基于连接结构优化的粒子群优化算法(SPSO) 用于神经网络训练,该算法在训练神经网络权 值的同时优化其连接结构,删除冗余连接,使神经网络获得与模式分类问题匹配的信息处理能力. 经SPSO 训练的神经 网络应用于Iris ,Ionosphere 以及Breast cancer 模式分类问题,能够部分消除冗余分类参数及冗余连接结构对分类性能 的影响. 与BP 算法及遗传算法比较,该算法在提高分类误差精度的同时可加快训
GA-PSOPSO
- (粒子群算法)作为添加算子改进GA (遗传算法),供大家学习-(PSO), as the operator to add to improve the GA (genetic algorithm) for them to learn
psoandimprovedpso
- 基本粒子群优化算法和改进粒子群优化算法程序,包括:用基本粒子群算法求解无约束优化问题,用带压缩因子的粒子群算法求解无约束优化问题,用线性递减权重粒子群优化算法求解无约束优化问题,用自适应权重粒子群优化算法求解无约束优化问题,用随机权重粒子群优化算法求解无约束优化问题,用学习因子同步变化的粒子群优化算法求解无约束优化问题,用学习因子异步变化的粒子群优化算法求解无约束优化问题,用二阶粒子群优化算法求解无约束优化问题,用二阶振荡粒子群优化算法求解无约束优化问题,用混沌粒子群优化算法求解无约束优化问题,
GAPSO
- 这个算法是遗传算法和粒子群优化算法相互结合的matlab程序,优化效率提高很多,不会陷入局部最优-This algorithm is a genetic algorithm and particle swarm optimization algorithm combined with each other matlab program, optimizing the efficiency a lot and will not fall into local optimum
psoandga
- 粒子群算法及其与遗传算法的比较,加深交流!-pso ga compare
TSP-based-on-improved-pso
- 基于对粒子群优化算法原理的分析,实现了一种基于TSP的改进的粒子群优化算法:求解TSP的混合粒子群算法,结合遗传算法、蚁群算法和模拟退火算法的思想来解决TSP问题。-Particle swarm optimization based on the principle of the analysis, implemented based on TSP, improved particle swarm optimization algorithm: solving the TSP hybrid pa
chap8(遗传算法和粒子群算法)
- 遗传算法流程以及几种应用场景,matlab原程序代码及mat文件(Genetic algorithm process and several application scenarios, matlab original program code and mat files)
liziqun
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的"交叉"(Crossover) 和"
遗传粒子群优化算法-GAPSO
- 遗传算法改进粒子群算法及混沌粒子群算法的源码(Improved genetic algorithm for particle swarm optimization and chaotic particle swarm optimization)
粒子群算法
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的"交叉"(Crossover) 和"
遗传粒子群优化算法-GAPSO
- 混沌粒子群优化算法,及其该算法的简单应用(A SIMPLE IMPLEMENTATION OF THE PARTICLE SWARM OPTIMIZATION)
GA-PSO
- PSO算法计算函数极值时,常常出现早熟现象,导致求解函数极值存在较大的偏差,然而遗传算法对于函数寻优采用选择、交叉和变异算子操作,直接以目标函数作为搜索信息,以一种概率的方式来进行,因此增强了粒子群优化算法的全局寻优能力,加快了算法的进化速度,提高了收敛精度。(When PSO algorithm calculates function extremum, it often appears premature phenomenon, which leads to large deviation