搜索资源列表
cw1
- 此程序为训练RBF网权值的量子粒子群优化算法,供各位参考-this program for training RBF net weights Quantum Particle Swarm Optimization Algorithm for reference
pso-bp
- 这是一个采用粒子群算法优化bp神经网络权值的MATLAB程序-This is a particle swarm optimization using neural network weights bp MATLAB program
psoyouhuannyj
- 基于粒子群优化的神经网络训练算法研究论文 摘 要: 本文提出了基于连接结构优化的粒子群优化算法(SPSO) 用于神经网络训练,该算法在训练神经网络权 值的同时优化其连接结构,删除冗余连接,使神经网络获得与模式分类问题匹配的信息处理能力. 经SPSO 训练的神经 网络应用于Iris ,Ionosphere 以及Breast cancer 模式分类问题,能够部分消除冗余分类参数及冗余连接结构对分类性能 的影响. 与BP 算法及遗传算法比较,该算法在提高分类误差精度的同时可加快训
PSO_BP
- 基于粒子群和BP神经网络的混合优化策略算法。将改进PSO算法与BP神经网络结合,用PSO算法取代梯度下降法来优化神经网络的连接权值和阈值。程序简单易懂。-Based on Particle Swarm and the BP neural network algorithm for hybrid optimization strategy. Will improve the PSO algorithm and BP neural network, using PSO algorithm to re
BP-PSO
- 本文提出了基于粒子群算法( PSO )的E lm an神经网络混合优化策略, 采用PSO 优化 连接权值来训练神经网络, 与标准BP算法相比, PSO 采用实数编码, 结构简单, 学习收敛快-The PSO-BP-based Forecast of Logistics Cost for Coal Enterprises
The-artificial-neural
- 人工神经网络识别字符,并用遗传算法,粒子群算法优化了神经网络权值-Artificial neural network to recognize the characters, and using genetic algorithms, particle swarm optimization neural network weights
Genetic-algorithm-optimization
- 遗传算法优化B P神经网络的目的是通过遗传算法得到更好的网络初始权值和阈值, 其 基本思想就是用个体代表网络的初始权值和阈值、 个体值初始化的B P神经网络的预测误差作为该个体的适应度值, 通过选择、 交叉、 变异操作寻找最优个体, 即最优的B P神经网络初始权值。除了遗传算法之外, 还可以采用粒子群算法、 蚁群算法等优化B P神经网络初始权值。-Genetic algorithm to optimize BP neural network is designed by means of g
psobpdiagnosis
- 利用粒子群算法优化BP神经网络的权值,将训练好的神经网络用于故障诊断中,进行模式识别,比BP神经网络收敛快-Utilizing particle swarm optimization BP neural network weights, the trained neural network for fault diagnosis, pattern recognition, neural network converges faster than the BP
PSO-BP
- 用粒子群优化法对BP神经网络的权值和阈值进行优化,提高神经网络运行精度。-Using particle swarm optimization method for weights and threshold of BP neural network optimization, improve precision of the neural network operation.
PSO-RBF
- 粒子群优化RBF网络权值,可以在线训练,好用的程序-Particle Swarm Optimization RBF network weights, online training, easy to use program
PSO_BP
- 粒子群优化BP神经网络算法,采用PSO优化神经网络的结构层个数,及隐含层的权值,相较BP神经网络,预测效果更好-Particle swarm optimization BP neural network algorithm, using PSO to optimize the number of neural network structure layer, and the value of the hidden layer, compared to BP neural network, the
QPSO
- QPSO算法,量子粒子群算法实例程序。用于优化神经网络权值阈值-Quot is the same as the number of users who are the same as the number of users who have the value
PSO-for-BP
- 用粒子群算法来训练网络参数,直到误差趋于一稳定值,然后用优化的权值用于BP算法-PSO is used to optimize connection weights of forward-back neural network until the learning error has tended to stability, Then we use BP algorithm with optimized weights to finish short-term load forecasting
www.dssz.com_pso-bp
- 基于神经网络的局限性,使用粒子群算法优化其权值,对其进行改进(PSO improved neural network)