搜索资源列表
oLitU9hX
- 这是一个聚类算法,其中含有对初始化聚类中心的优化。
dataMining.rar
- 数据挖掘的软件,集成了关联规则、k-均值聚类、模糊聚类、k-中心点聚类四种算法,software of data mining
k-means
- 基于K-means聚类算法的社团发现方法 先定义了网络中节点关联度,并构建了节点关联度矩阵, 在此基础上给出了一种基于 K-means聚类算法的复杂网络社团发现方法。 以最小关联度原则选取新的聚类中心, 以最大关联度原则进行模式归类,直到所有的节点都划分完为止, 最后根据模块度来确定理想的社团数-K-means clustering algorithm based on the association discovery To define a network node cor
k-centers
- 不同于k均值聚类的k中心聚类,2007年SCIENCE文章Clustering by Passing Messages Between Data Points 中的方法-Unlike k-means clustering of the k cluster centers, in 2007 SCIENCE article, Clustering by Passing Messages Between Data Points of the Method
gaMatlab
- 模糊C-均值算法容易收敛于局部极小点,为了克服该缺点,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,由遗传算法得到初始聚类中心,再使用标准的模糊C-均值聚类算法得到最优分类结果。-Fuzzy C-means algorithm converges to local minimum points easily, in order to overcome the shortcomings of genetic algorithm is applied to fuzzy C-means al
Cmean
- C均值聚类算法 ,采用修改后的聚类方法,快速的修改聚类中心,减少计算量-C mean
KMEANS
- k-means C++ 源代码, 修正原来的错误, 增加的新功能 1、用vector实现其存储 2、直接在程序中读取数据集 3、结果可以保存到文件中 4、用户可以输入聚类个数 5、初始聚类中心随机选择(代码自动随机)-k-means C++ source code, fixes the original error, the increase in new features 1, 2, with the vector to achieve its store dire
KMEANS
- k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类
K-means
- 聚类算法(K-means)源代码,通过对该代码的运行,可以实现对各种数据的聚类显示,最终选出聚类中心-Clustering algorithm (K-means) source code, run through the code, can display a variety of data clustering, selected a cluster center
Exterme_k_means
- Extreme k-means,被yuboYuan提出,给定初始聚类中心,聚类快。-Extreme k-means,poposed by yuboYuan,the intial center is fixed, faster than traditional k-means
Isogroup(ISODATA)
- 本例实现的动态聚类中的ISODATA算法,是一种逻辑结构较为复杂的算法,通过样本均值的迭代计算得到聚类中心。-In this case to achieve the dynamic clustering ISODATA algorithm, is a logical structure more complex algorithm, the iterative sample mean calculated cluster center.
k_means
- k均值处理流程: (1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2) 循环(3)到(4)直到每个聚类不再发生变化为止; (3) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (4) 重新计算每个(有变化)聚类的均值(中心对象)-k means
kmeans
- Kmeas聚类源代码,全C++语言实现,程序有详细注释,并可以存储组后所得到的聚类中心。-Cluster source code Kmeas, full C++ language, the program has detailed notes, and can storage group cluster center.
apcluster
- AP聚类算法:Affinity Propagation (AP) 聚类是最近在Science杂志上提出的一种新的聚类算法。-Affinity Propagation (AP) 聚类是最近在Science杂志上提出的一种新的聚类算法。它根据N个数据点之间的相似度进行聚类,这些相似度可以是对称的,即两个数据点互相之间的相似度一样(如欧氏距离) 也可以是不对称的,即两个数据点互相之间的相似度不等。这些相似度组成N×N的相似度矩阵S(其中N为有N个数据点)。AP算法不需要事先指定聚类数目,相反它将所有的
apclusterk
- 相似性传播聚类,不需要初始化聚类中心,聚类速度优于k-maans,k-centers等聚类算法-Affinity propagation clustering, do not need to initialize the cluster center, cluster velocity than k-maans, k-centers clustering algorithm, etc.
apcluster
- 实现放射传播算法,通过调整适当的P值得到需要的聚类中心-Achieve radiation propagation algorithm, it is worth to the cluster center needs by adjusting the appropriate P
Clustering-Algorithms
- 在众多聚类算法中,基于划分的模糊聚类算法是模式识别中最常用的算法类型之一.至今,文献中仍不断 有关于基于划分的模糊聚类算法的研究成果出现.为了能更为系统和深入地了解这些聚类算法及其性质,本文从改 变度量方式、改变约束条件、在目标函数中引入熵以及考虑对聚类中心进行约束等几个方面,对在 C-均值算法的 基础上得到的基于划分的模糊聚类算法作了综述和评价,对各典型算法的优缺点进行了实验比较分析.指出标准 FCM算法被广泛应用的原因之一是它对数据的比例变化具有鲁棒性,而其他类似的算法对这种
isodatacenter
- 神经网络RBF Isodata算法计算得到iris数据集的聚类中心,从而进行分类。并包含iris数据集-RBF Isodata neural network algorithm to get the cluster center iris data set, thus classified. And contains iris data set
dpca
- 自动选择聚类中心的快速搜索密度峰值聚类算法(A fast search algorithm for density peak clustering based on automatic selection of clustering centers)
kmeans
- 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。(kmeans algrithom use for clustering)