搜索资源列表
matlab作业
- 模式识别一份很好的作业,包括线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,支持向量机-a very good operation, including linear classification; Minimum risk Bayesian classifier; Supervised learning method Hierarchical clustering analysis; K-L transform effective features, supp
BP-nn
- BP神经网络分类器 程序有两种运行状态,一个是学习,另外一个是分类。在学习状态下,在Dos命令符下输入bp learn,便开始学习了,学习的结果放在weight.dat中;在工作状态下,在Dos命令符下输入bp work,便开始识别classfyme.dat中的数据了,识别完成后,结果放在results.dat中。在bp运行的任何一种状态下,都不能手工打开Weight.dat、Sample.dat、classfyme.dat、results.dat中的任何一种。~..~-BP neur
Perceptron-and-ADALINE-network
- 这些程序包括以下方面1.使用感知器和ADALINE网络对字母进行识别。2.随机选取初始权向量,选取适当的迭代步长(对ADALINE网络),用给出的四个输入训练样本,对上述两个网络分别进行训练,直到网络收敛;3.对Adaline网络选取不同的值,分别画出误差曲线,观察它们的变化规律;4.对感知器选取不同的初始权向量,分别计算每类训练样本到超平面的距离,观察它们的异同;5.训练结束后,检验网络的识别能力(使用100个检测样本,对应于每个取25个含噪的变形):6.比较Adaline和单神经元感知器的分
nn
- 线性神经网络,BP神经网络,Hopfield神经网格,Elman神经网络,RBF神经网络;在模型应用模块中实现了六种实际应用:RBF网络的船用柴油机故障诊断,BP网络的齿轮箱故障诊断,SOM网络的回热系统故障诊断,BP网络的设备状态分类器,SOM网络的人口比例样本分类,SOM网络的土壤性状样本分类。-Linear neural network, BP neural network, Hopfield neural network, Elman neural network, RBF neural
work_for_pattern_recognition
- 通过设计线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,设计支持向量机对给定样本进行有效分类并分析结果。-By designing a linear classifier minimum risk Bayes classifier supervised learning method hierarchical cluster analysis K-L transform to extract efficient features, designed to
DCT
- 本文设计基于DCT的人脸识别系统,首先结合当今人脸识别的背景和发展状况讨论了人脸识别的研究内容及在各方面的应用;然后研究了人脸识别进行预处理,讨论了人脸识别预处理的其他方法,分析各种方法的利弊,最后采用DCT(离散余弦变换)实现人脸图像预处理中的降维处理;接下来对人脸图像的特征提取进行了研究,简单叙述了几何特征提取和代数特征提取,同时深入研究了基于DCT和PCA变换的人脸图像特征提取,从而实现是否对人脸识别系统识别率有所提高的研究;对于分类器的选择,本文对两种分类器进行了探讨,即最近邻分类器和B
shuzishibie
- 以数字与字母识别系统的基本处理流程为主线,从待识别数据的获取入手,通过预处理、特征的提取与选择,到分类器的设计等部分都进行了较为详尽的分析与研究,MATLAB仿真实验表明;采用最小距离法对所给出的一组数字及字符图片进行不同的分块识别,最终得出分8块识别率为85.71 ;分16块识别率为95.71 ;分20块识别率为95 ;具有较高的识别率。-The basic process flow of the numbers and letters recognition system as the ma
Pattern-Recognition2
- 清华模式识别第二次作业,采用dataset2.txt 数据作训练样本,采用身高与体重特征进行性别分类,建立最小错误贝叶斯分类器;2、采用身高体重数据作为特征,以 dataset2.txt 作为训练数据,用 Fisher 线性判别方法设计分类器;3、从多层感知器、SVM、近邻法选择一种方法,进行上述的分类实验;-Tsinghua second operation pattern recognition using dataset2.txt data for training samples, us
Fisher1
- Fisher线性分类器的设计,1、掌握Fisher线性判别方法;2、掌握Bayes决策的错误率的计算;3、掌握分类器错误率的估算方法。 -The design of Fisher.
project1_code
- 这是matlab编写的3个常用机器学习分类器代码。其中包括了: 1)PCA 分类其;2)LDA分类器:3)naive贝叶斯分类器。 3个算法的实现参考了《Introduction to Machine Learning》。 除了这3个分类算法的实现外,代码里面还包含了用于测试的main.m 主程序和一个实验的简要报告。实验在著名数据集acoustic_train_data 上进行。-This source code includes the implementation of three f
Ensemble-Learning
- 集成学习将若干基分类器的预测结果进行综合,具体包括Bagging算法和AdaBoost算法;还有随机森林算法,利用多棵树对样本进行训练并预测的一种分类器-Integrated learning integrates the prediction results of several base classifiers, including Bagging algorithm and AdaBoost algorithm and random forest algorithm, using a t
PNN网络代码
- 概率神经网络(Probabilistic Neural Network)是由D.F.Speeht博士在1989年首先提出,是径向基网络的一个分支,属于前馈网络的一种。它具有如下优点:学习过程简单、训练速度快;分类更准确,容错性好等。从本质上说,它属于一种有监督的网络分类器,基于贝叶斯最小风险准则。(Probabilistic neural network was first proposed by Dr. D.F.Speeht in 1989. It is a branch of radial
kernelBP_chol
- 针对图像的基于核置信传播的分类器,具有收敛速度快,精度高的优点。(This is a sample code for Kernel Belief Propagation Classifier for images.)
ELM分类器
- ELM是基于深度学习的分类器,运算速度快。 在B_data.m里导入待分类矩阵B.mat(1-n列为特征值,n列为标签);运行B_data.m;再打开fuzzyEn_main.m并运行即可。(ELM is based on depth learning classifier, computing speed. In B_data.m imported matrix to be classified B.mat (1-n as eigenvalues, n as a label); Run B
DBN
- 深度信念网络,神经网络的一种。既可以用于非监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。(Deep belief network, a kind of neural network. It can be used for unsupervised learning, similar to a self-coding machine, or supervised learning, as a classifier.)