搜索资源列表
imputation.tar
- 一个很有用的EM算法程序包,可用于混合高斯模型,值得一看哦
高斯混合模型的EM算法的源程序代码
- GMM模型的一个小例子,可以做出不学习这个模型用
EM-Algorithm.zip
- 最大期望值算法以及在混合高斯模型的应用的详细介绍,Expectations algorithm and the largest mixed-Gaussian model in the details of the application
EM
- EM算法介绍及Matlab演示代码(一维和多维高斯混合模型学习算法)-Introduction of EM algorithm and Matlab codes that implement the algorithm
EMCluster
- EM聚类算法,是学习混合高斯模型的好帮手-EM algorithm, Gaussian mixture model to learn a good helper
EM_GM
- 针对于K维高斯混合模型估计的期望最大算法-EM algorithm for k multidimensional Gaussian mixture estimation
em
- 基于EM算法的模型聚类的研究及应用,GMM高斯混合模型-EM-based clustering algorithm and its application model, GMM Gaussian mixture model
GMM_EM
- 高斯混合模型的EM搭建过程以及详细说明,利于初学者的学习!-EM Gaussian mixture model building process as well as detailed instructions, which will help beginners to learn!
EMal
- 使用EM算法完成图像的分割,使用混合高斯模型,可以修改分类数。运行EM.m-Expectation Algorithm
GMM_EM
- 高斯混合模型EM算法,通过EM算法来进行高斯混合模型的参数估计-Gaussian mixture model EM algorithm parameters by EM algorithm to estimate the Gaussian mixture model
GMM
- 高斯混合模型,通过EM算法迭代得出,可用于语音识别,图像识别等各种领域(Gauss mixture model is iteratively obtained by EM algorithm, and can be used in various fields such as speech recognition and image recognition)
404440
- 混合高斯概率密度模型,其参数估计可以通过期望最大化( EM) 迭代算法获得,()
GMM
- 高斯混合聚类的python实现代码,里面有data的demo(Python implementation code of Gauss mixed clustering)
RCY-GMMtest1
- 高斯混合模型(GMM,Gaussian Mixture Model)参数如何确立这个问题,详细讲解期望最大化(EM,Expectation Maximization)算法的实施过程。(How to establish the parameters of Gauss mixture model and explain the implementation process of the expectation maximization algorithm in detail.)