搜索资源列表
LDA
- 使用matlab实现的LDA(线性判别分析)分类器,以及PCA的实现-Implemented using matlab LDA (linear discriminant analysis) classifier, and the implementation of PCA
facedetection
- PCA、LDA人脸检测,压缩包里实现了PCA、LDA、最小距离分类器,人脸检测!-PCA, LDA face detection, compression bag to achieve the PCA, LDA, minimum distance classifier, face detection!
DCT
- 本文设计基于DCT的人脸识别系统,首先结合当今人脸识别的背景和发展状况讨论了人脸识别的研究内容及在各方面的应用;然后研究了人脸识别进行预处理,讨论了人脸识别预处理的其他方法,分析各种方法的利弊,最后采用DCT(离散余弦变换)实现人脸图像预处理中的降维处理;接下来对人脸图像的特征提取进行了研究,简单叙述了几何特征提取和代数特征提取,同时深入研究了基于DCT和PCA变换的人脸图像特征提取,从而实现是否对人脸识别系统识别率有所提高的研究;对于分类器的选择,本文对两种分类器进行了探讨,即最近邻分类器和B
stprtool_v2.12
- 统计模式识别工具箱(STPRTool 版本2.12 2013-09-12) 功能有线性判别函数、特征提取、密度估计和聚类、支持向量机、贝叶斯分类器、交叉验证等-Statistical Pattern Recognition Toolbox Methods: Fisher,PCA,GMM,K-means,SVM,Bayes classifier,Cross-validation,KNN,etc.
project1_code
- 这是matlab编写的3个常用机器学习分类器代码。其中包括了: 1)PCA 分类其;2)LDA分类器:3)naive贝叶斯分类器。 3个算法的实现参考了《Introduction to Machine Learning》。 除了这3个分类算法的实现外,代码里面还包含了用于测试的main.m 主程序和一个实验的简要报告。实验在著名数据集acoustic_train_data 上进行。-This source code includes the implementation of three f
HellokinectMAT
- 感知行为的影响因素包括单个关节的动作和不同关节的组态。因此提出一种新的基于关节的位置差异的特征类型,联合包括静态姿势、动作、位移在内的行为信息进行识别。采用关节在两个时间和空间区域的差异来明确地模拟个别关节动力学和不同关节的组态。然后应用主成分分析(PCA)来获得所需的特征。同时应用非参数的简捷的贝叶斯最近邻(NBNN)分类器进行多类行为的分类。这个NBNN分类器避免了帧描述符的量化,计算“图像到类别”的距离而不是“图像到图像”的距离。15到20帧的数据就足以实现手势以及动作的识别,无需应用整个
code_1
- 在机器学习中利用欧氏距离设计一个KNN分类器,实现五折交叉验证,并用PCA进行降维-Develop a k-NN classifier with Euclidean distance and simple voting.Perform 5-fold cross validation, find out which k performs the best (in terms of accuracy)。Use PCA to reduce the dimensionality to 6, then p
]ORL+PCA+SVM-11
- 编写了用户界面程序实现ocr人脸数据集的识别,使用了svm分类器(A user interface program is developed to realize the recognition of OCR face data set, and the SVM classifier is used)