搜索资源列表
BP
- 基于BP神经网络的 参数自学习控制 (1)确定BP网络的结构,即确定输入层节点数M和隐含层节点数Q,并给出各层加权系数的初值 和 ,选定学习速率 和惯性系数 ,此时k=1; (2)采样得到rin(k)和yout(k),计算该时刻误差error(k)=rin(k)-yout(k); (3)计算神经网络NN各层神经元的输入、输出,NN输出层的输出即为PID控制器的三个可调参数 , , ; (4)根据(3.34)计算PID控制器的输出u(k); (5)进行神经网络学习,在线调整加权
CHAPTER4
- 本文讨论了神经网络PID控制策略,提出了一种单神经元自适应PID控制器,给出了控制模型,探讨了单神经元自适应PID控制学习算法,通过修改神经元控制器连接加权系数 ,构成了自适应PID控制器。利用神经网络的自学习能力进行PID控制参数的在线整定,并使用了MATLAB软件进行了仿真研究。比较传统PID控制器与单神经元自适应PID控制器两者的仿真结果表明,神经网络PID控制器参数调节简单,具有很高的精度和很强的适应性,可以获得满意的控制效果。-This paper discusses the nerv
HsPIDController
- 使用C++实现PID控制算法,程序中包含输入数据的产生;控制算法的实现;数据的输出,用户可以向结构中填入自己的输入和输出-The use of C++ to achieve PID control algorithm, the program contains input data generation control algorithm implementation data output, the user can fill in the structure of their own i
pid
- 人工神经网络(Artificial Neural Network)是从生理角度对智能的模拟,具有极 高的学习能力和自适应能力,能够以任意精度逼近任意函数,完成对系统的仿真; 而遗传算法是对自然界生物进化过程的模拟,具有极强的全局寻优能力,这两种 算法都是当下研究较多的智能方法。将这两种方法与常规的 PID 控制相结合, 构成智能 PID 控制器,使其具有参数自整定、自适应的能力,以适应复杂环境 下的控制要求,这一思路对提高控制效果具有很好的现实意义。 -Artificia
bppid
- 基于神经网络bp的pid控制器,可以运行。(based on nerual network pid controller)
BP based PID Control
- 被控对象为传递函数,是神经网络BPpid控制的(Based on bp nerual network pid control)