搜索资源列表
deboor-cox.rar
- 目的:运用强化学习!多分类器集成!降维方法等最新计算机技术,结合细胞病理知识,设计制作/智能化肺癌细胞病理图像诊断系统0"方法:采集细胞图像,运用基于强化学习的图像分割法将细胞区域从背景中分离出来 运用基于样条和改进2方法对重叠细胞进行分离和重构 提取40个细胞特征用于贝叶斯!支持向量机!紧邻和决策树4种分类器,集成产生肺癌细胞分类结果 建立肺癌细胞病理图库,运用基于等降维方法对细胞进行比对,给予未定型癌细胞分类"结果:/智能化肺癌细胞病理诊断系统0应用于临床随机1200例肺
NcutClustering
- 谱聚类和SVM相结合的图像分割程序,这是用matlab编的谱聚类程序,该方法能有效的用于数据分类。-This is a matlab procedures for the spectral clustering.The method is effective for data classification.
svm-phasestateofcloudclassificationalgorithmsource
- 利用支持向量机的分类特性,结合modis的云图像,对云相态进行分类,利用svm云相态分类算法源代码-The use of support vector machine classification of features, combined with clouds modis images of the cloud phase state classification using svm-phase state of cloud classification algorithm source c
2DLDAwiththeSVM-basedfacerecognitionalgorithm
- 二维线性鉴别分析(2DLDA)算法能有效解决线性鉴别分析(LDA)算法的“小样本”效应,支持向量机 (SVM)具有结构风险最小化的特点,将两者结合起来用于人脸识别。首先,利用小波变换获取人脸图像的低频分量,忽 略高频分量:然后,用2DLDA算法提取人脸图像低频分量的线性鉴别特征,用“一对多”的SVM 多类分类算法完成人脸 识别。基于ORL人脸数据库和Yale人脸数据库的实验结果验证了2DLDA+SVM算法应用于人脸识别的有效性。-”Small sample size”problem
jchshibie
- 支持向量机(SVM)是一种基于超平面分类的新的学习方法,具有很强的泛化能力。研究了支持向量机的学习机理,以及实现支持向量机的序贯最小优化算法(SMO),并用来对舰船图像进行识别。首先将待识别目标进行二维小波分解,获取不同尺度下的小波系数,然后对其进行主元分析,得到的主元分量作为支持向量机的特征量输入。实验结果表明,该方法具有良好的分类性能。-Support Vector Machine (SVM) is a hyperplane-based classification of new learn
svmsegmentation
- 为了提高白细胞自动识别算法的性能,提出了基于均值移动和单类支持向量机的血细胞图像分割新方法. 该方法的原理是将图像中颜色相对稳定的背景和红细胞部分像素作为正训练样本,将颜色复杂多样的白细胞像素作为异常数据检测. 均值移动过程用来在红、绿、兰(RGB) 颜色空间寻找正训练样本集,通过均匀抽样和颜色量化措施,实现单类支持向量机(SVM) 在线实时训练,最终图像像素经过单类SVM 分类来实现分割. 实验表明,新方法对涂片制备和光照变化导致的图像颜色改变有很好的适应性,图像分割精度优于常用流域算法,而耗
Multi-class-SVM-Image-Classification
- 基于神经网络的遥感图像分类取得了较好的效果,但存在固有的过学习、易陷入局部极小等缺点.支持向量机机器学习方法,根据结构风险最小化(SRM)原理,表现出很多优于其他传统方法的性能,本研究的基于多类支持向量机分类器的遥感图像分类取得了达95.4 的分类精度.但由于遥感图像分类类别多,所需训练样本较大,人工选择效率较低,为此提出以人工选择初始聚类质心、C均值模糊聚类算法自动标注训练样本的基于多类支持向量机的半监督式遥感图像分类方法,期望能在获得适用的分类精度的基础上有效提高分类效率-Neural ne
imageindex
- 基于内容的图像检索中的一些关键环节:特征提取:颜色直方图;纹理特征等 相似度:马氏距离,欧氏距离等 相关反馈:机器学习方法,如SVM,神经网络等 检索与分类:两个很相似的样本距离很小,虽然两个不相似的样本距离未必很大 -image index based on texture
newSVM
- 这是一篇改进的基于SVM多分类算法的文章,文章详细介绍了算法原理及应用,对图像图形处理专业人员的重要参考价值!-This is an improved multi-classification algorithm based on SVM article, the article describes in detail the algorithm theory and application of important reference value on the image and graphi
SVM-matlab
- svm的各种经典的程序,用于对数据、图像进行分类,回归。其中,既包含分两类的程序,也包括分多类的程序,以及svm改进算法的程序。-svm various classic procedures for data, image classification, regression. Which contains both the two types of procedures, including many types of procedures and svm algorithm procedur
cbir
- 基于内容的图像检索程序,matlab代码,SVM分类实现,检索效果好,对于研究基于内容检索的学习者用处很大-Content-based image retrieval procedures, matlab code, SVM classification to achieve good retrieval effect, for content-based retrieval research has proved very useful to learn
Pattern-Recognition-and-SVM
- 对四分类图像,使用两个提取特征值向量的方法来提取特征,然后使用SVM进行分类识别,里边包含了LIBSVM进行识别时各个参数的变化时的对结果的影响。里面包含完整源代码,在word里。是我的数字图像作业。-Four categories of images, using two feature extraction methods to extract the value of feature vectors, and then use SVM classification and recognit
An-Introduction-to-SVM
- 支持向量机(SVM)是在统计学习理论的基础上发展起来的新一代学习算法,该算法在文本分类、手写识别、图像分类、生物信息学等领域中获得了较好的应用。本书是SVM的权威参考书。-Support Vector Machine (SVM) is a new learning algorithm developed on the basis of statistical learning theory, the algorithm to obtain a better application in the
fruitvegtablerecognition_svm
- 基于K-means算法和SVM算法对不同种类的水果蔬菜图像进行分类识别,算法识别率较高。- Classifying a variety of fruits and vegetables images by using K-means algorithm and SVM.
2
- 基于SVM算法和纹理特征提取的遥感图像分类(based on the SVM algorithm and texture feature extraction of remote sensing image classification)
20171211留档
- 利用SVM对制备的样本进行三分类,对图像进行三角形匹配,模板匹配(SVM was used to classify the samples in three categories. Triangle matching and template matching were applied to the images.)
SVM做图片处理
- 使用SVM算法对CIFAR-10图片数据集进行分类,包括模型的训练,测试和参数的调优(Using SVM algorithm to classify CIFAR-10 image data sets, including model training, testing and parameter tuning)