搜索资源列表
-
0下载:
Boosting is a meta-learning approach that aims at combining an ensemble of weak classifiers to form a strong classifier. Adaptive Boosting (Adaboost) implements this idea as a greedy search for a linear combination of classifiers by overweighting the
-
-
0下载:
采用C语言实现的Adaboost算法,一个很经典的分类器算法-Using C language of the Adaboost algorithm, a classic Classifier
-
-
0下载:
WeakLearner,各种弱分类器,可供AdaBoost训练使用-WeakLearner, a variety of weak classifier, for training in the use of AdaBoost
-
-
1下载:
WeakLearner,弱分类器,可供Adaboost训练使用,补充-WeakLearner, the weak classifier, for training in the use of Adaboost, supplementary
-
-
0下载:
AdaBoost分类器的源代码的用户手册, 内有原始代码下载网址。-AdaBoost classifier source code of the user manual, there are source code download link.
-
-
1下载:
adaboost 源码,综合多个弱分类器,通过动态修改元组权值以及得到的分类器权值,提升为复合强分类器。-AdaBoost source code, several weak classifiers, by dynamically modifying the tuple classifier obtained by weight and weight, enhance the strong classifier for composite.
-
-
0下载:
这是一本介绍AdaBoost算法的资料。Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器-This is an introduction AdaBoost algorithm information. Adaboost is an iterative algorithm, the core idea for a training set of different classifiers (weak cl
-
-
0下载:
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。-Adaboost is an iterative algorithm, the core idea is the same for a training set different classifiers (weak classifiers), and then set up these weak classifiers to form a
-
-
0下载:
adboost分类器 matlab源程序 用于训练样本 实现分类-Adaboost classifier Matlab source for training samples to achieve classification
-
-
0下载:
集成学习将若干基分类器的预测结果进行综合,具体包括Bagging算法和AdaBoost算法;还有随机森林算法,利用多棵树对样本进行训练并预测的一种分类器-Integrated learning integrates the prediction results of several base classifiers, including Bagging algorithm and AdaBoost algorithm and random forest algorithm, using a t
-
-
0下载:
BP-Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。-The BP-Adaboost model uses BP neural network as weak classifier to repeatedly train BP neural network to predict the sample output. Adaboost algorithm is used to obtain a
-
-
0下载:
基于BP-Adaboost的强分类器设计(Design of strong classifier based on BP-Adaboost)
-
-
0下载:
一个简单的基于matlab实现的adaboost分类器算法实现(A simple implementation of AdaBoost classifier algorithm based on MATLAB)
-