搜索资源列表
-
0下载:
分类聚合算法k-means的实现,用matlab-polymerization classification algorithm k-means the realization of using Matlab
-
-
0下载:
模式识别-神经网络bp算法用于模式分类,采用了matlab自带的接口函数-pattern recognition-bp neural network algorithm for pattern classification, using the Matlab's own interface function
-
-
0下载:
模式识别,算法用于模式分类,采用了matlab自带的接口函数-pattern recognition algorithm for pattern classification, using the Matlab's own interface function
-
-
3下载:
利用bp算法对鸢尾花数据进行分类的matlab实现程序-Bp algorithm using iris data classification procedures to achieve matlab
-
-
0下载:
利用matlab实现的基于EM算法的贝叶斯分类器的源代码,可以用来分类或识别,很值得收藏-Using matlab to achieve EM algorithm based on Bayesian classifier of the source code can be used to classification or identification, it is worthy of collection
-
-
0下载:
用SVM算法实现聚类与分类的例程。内附实验数据,运行结果以及经典参考文献一篇《A New Fuzzy Cover Approach to Clustering》-SVM algorithm using clustering and classification routines. Included the experimental data, the results as well as the classic References 1 " A New Fuzzy Cover Appro
-
-
0下载:
对WORD文档里的二类数据进行分类,使用神经网络的BP算法。采用三层网络。-WORD documents in the two types of data classification, using neural network BP algorithm. Three-tier network.
-
-
0下载:
神经网络感知器模型程序,可以对现行可分系统进行分类。用matlab实现。另附BP算法文档。-Neural network sensor model program that can be divided into the current classification system. Using matlab. BP algorithm attached document.
-
-
0下载:
用matlab实现K近邻算法,用于数据挖掘的分类-K-nearest neighbor algorithm for the classification of data mining using matlab
-
-
0下载:
用SVM算法实现的白酒分类模式识别的源代码,可以嵌入自己开发的应用程序,使用matlab的SVM工具箱实现的-the complementation of pattern classification of SVM algorithm using matlab
-
-
0下载:
用matlab编写的高斯过程的算法,常用于预测和分类-Algorithm using matlab Gaussian process, commonly used in the prediction and classification
-
-
1下载:
用matlab编写的快速纽曼算法,用于社团检测,对于不太复杂的网络分类效果很好-Prepared using matlab Newman fast algorithm for detecting community, for less complex network classification works well
-
-
0下载:
Br方法做的多标签在线分类算法程序,matlab实现
-mutli-label online classification algorithm Using br approach,implemented by matlab
-
-
1下载:
1. 使用matlab自带的人脸识别工具(Viola-Jones算法)找出人脸的位置,并裁剪出人脸区域。
2. 使用Gabor滤波器识别出人脸的局部特征及纹理。
3. 训练一个SVM进行表情分类。
4. 交叉验证得到表情分类正确率为83.3 。
操作说明和系统描述请见ReadMe.-1. Using matlab with face detection tool (Viola-Jones algorithm) to find the location of a human
-