CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 源码下载 数值算法/人工智能 人工智能/神经网络/遗传算法 搜索资源 - s函数 控制

搜索资源列表

  1. 模拟退火例子1

    1下载:
  2. 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
  3. 所属分类:人工智能/神经网络/遗传算法

    • 发布日期:2008-10-13
    • 文件大小:8.91kb
    • 提供者:刘明
  1. 模拟退火例子2

    0下载:
  2. 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
  3. 所属分类:人工智能/神经网络/遗传算法

    • 发布日期:2008-10-13
    • 文件大小:10.82kb
    • 提供者:刘明
  1. 模拟退火例子3

    0下载:
  2. 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
  3. 所属分类:人工智能/神经网络/遗传算法

    • 发布日期:2008-10-13
    • 文件大小:5.91kb
    • 提供者:刘明
  1. invertedpendulum

    1下载:
  2. 倒立摆是一种复杂、时变、非线性、强耦合、自然不稳定的高阶系统,许多抽象的控制理论概念都可以通过倒立摆实验直观的表现出来。基于人工神经网络BP算法的倒立摆小车实验仿真训练模型,其倒立摆BP网络为4输入3层结构。输入层分别为小车的位移和速度、摆杆偏离铅垂线的角度和角速度。隐含层单元数16个。输出层设置为1个输出单元。输入层采用Tansig函数,隐含层采用Logsig函数,输出层采用Purelin函数。用Matlab 6.5数值计算软件对模型进行学习训练,并与线性反馈控制逻辑算法对比,表明倒立摆控制B
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-03-30
    • 文件大小:211.94kb
    • 提供者:月到风来AA
  1. TSP

    0下载:
  2. 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-04-06
    • 文件大小:114.35kb
    • 提供者:IT农夫
  1. mnth

    0下载:
  2. 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-04-01
    • 文件大小:4.89kb
    • 提供者:leansmall
  1. IntelligentTacticalFlight

    1下载:
  2. &基于贝叶斯网络和模糊推理 技术A实现了战场威胁级别及其相对重要性程度的综合评估&利用模型预测控制的滚动优化和在线校正原理A实现了 飞机在线飞行路径规划&建立了路径规划代价函数中加权因子的智能化分配方法A进而实现了威胁评估与路径规划 之间的集成A使得路径规划系统能够自适应战场态势的动态变化.-koorow&E}8k w$lrm}nz$pkzz8zzn8omp$lm}l8km 8y8 ko|l8 kmry8rnj$lmkos8kl88zmk9 rz}8|9kz8|$ouk{8zrko
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-03-30
    • 文件大小:133.08kb
    • 提供者:hans
  1. sfun_mohu

    2下载:
  2. 模糊控制的S函数实现过程,没有用模糊工具箱!-S functions for fuzzy control process, there is no fuzzy toolbox!
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-03-31
    • 文件大小:976byte
    • 提供者:tangjie
  1. using-adaptive-chebyshev

    0下载:
  2. 提出了一种基于自适应 Chebyshev 多项式神经网络(ACNN)的 Logistic 混沌系统控制算法。该算法采用 Chebyshev 正交多项式作为神经网络的激励函数, 构建 Logistic 混沌系统的预测与控制模型。为了保证算法的稳定性, 提出和证明了收敛定 理, 并利用自适应学习率算法提高神经网络的学习效率和收敛速度。通过采用自适应 Chebyshev 神经网络直接学习 Logistic 混 沌系统的动态特性, 并对系统实施目标函数控制。实验仿真结果表明, 该算法在 L
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-04-10
    • 文件大小:1.32mb
    • 提供者:
  1. c8bp_pid

    0下载:
  2. 已封装好的bp 神经元控制pid以及s函数源程序 变量T,nh,xite,alfa,kF1,kF2-Bp neurons have been packaged and s function source code control pid Variable T, nh, xite, alfa, kF1, kF2
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-04-04
    • 文件大小:7.44kb
    • 提供者:fan
  1. SA

    0下载:
  2. 模拟退火算法   模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-04-15
    • 文件大小:4.93kb
    • 提供者:and
  1. GeneticAlgorithm

    0下载:
  2. 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-11-10
    • 文件大小:21.79kb
    • 提供者:SmileHF
  1. NNC_PID_1_2

    2下载:
  2. 该MDL主要通过Matlab Simulink实现神经网络的PID控制,两个例子中神经网络模块分别利用Simulink\User-Defined Functions\MATLAB Fcn和S函数方式实现。在S函数中引入T,nh,xite,alfa,kf1,kf2等参数,在S-Function模块的Parameters处予以初始化。并附带了S函数的使用方法,供大家学习Simulink中两种自定义模块的使用方法。(The MDL mainly through the Matlab Simulink
  3. 所属分类:人工智能/神经网络/深度学习

    • 发布日期:2017-12-20
    • 文件大小:34kb
    • 提供者:春眠不觉
搜珍网 www.dssz.com