搜索资源列表
rossler
- 用来计算rossler吸引子的程序,运用四阶龙格库塔法非常实用,-used to calculate rossler attractor procedures, using four-Runge - Kutta method is very practical.
josephsonmatlab
- 本程序基于约瑟夫森结的RSJ模型,对无微波辐照和微波辐照下约瑟夫森结的特性进行了数值计算求解,其中有微波辐照的RSJ模型求解采用了四阶龙格库塔方程函数,两种情况都给出了I-V特性曲线图(程序包中也附带),展现了量子化电压台阶。
stance_dff
- 采用四阶龙格库塔方法进行微分方程解算,用matlab编写的源代码,主要用于四元素微分方程的实时解算
longgeceshi 四阶龙格库塔法解微分方程组实例
- 四阶龙格库塔法解微分方程组实例,没有调用函数,而是在基本含义基础上进行编译,有助于对龙格库塔法的理解。-Fourth-order Runge-Kutta method for solving differential equations instance, did not call the function, but on the basis of the basic meaning of compiler, contribute to the understanding of Runge-Ku
MyRunge_Kutta
- 实现四阶龙格库塔算法,求解非线性方程或是非线性方程组。-To achieve fourth-order Runge-Kutta algorithm for solving nonlinear equations or nonlinear equations.
main
- 导弹弹道仿真计算程序,采用四阶龙格库塔法,为研究导弹弹道仿真提供有效计算方法-Missile trajectory simulation program, using fourth-order Runge-Kutta method for the study of the missile trajectory simulation provides an effective method
EquationGUI-II
- 采用四阶龙格——库塔算法,应用MATLAB编写的常微分方程、偏微分方程求解算法及界面。 关键词:gui,ode,pde,difference method, runge kutta,euler,heun MATLAB版本:7.0 (R14)-EULER.m HEUN.m Rk4.M implement euler heun and runge kutta fourth order to solve ODE VANDERPOLODE.m LOGISTICOODE.m PREDAPREDA
MyRK4sys
- 四阶龙格库塔法解常微分方程组 四阶龙格库塔法解常微分方程组-4-Runge-Kutta
four-stepRunge-Kuttastatutoryfour-stepRunge-Kuttam
- 解微分方程(组)的定步长四阶龙格库塔法算法源代码-Solution of differential equations (Group) of fixed step size fourth-order Runge-Kutta method algorithm source code
rk4
- 龙格库塔四阶方法,matlab编程,仅供参考-Runge-Kutta fourth-order method, matlab programming, reference
rk4
- 改进的四阶龙格库塔算法,Improved fourth-order Runge-Kutta algorithm另带独立分量法程序-Improved fourth-order Runge-Kutta algorithm
function
- 一个函数的编写,实现四阶龙格-库塔方法解高阶微分方程组的初值问题 -Write a function to achieve fourth-order Runge- Kutta method for solving the initial value problem of higher order differential equations
suanfa
- 数值解与理论解对比可知,四阶龙格-库塔法的精度已经很高,用它来解一般常微分方程已经足够了。-Numerical comparison shows that the theoretical solutions, Runge- Kutta method has high accuracy, and use it to solve ordinary differential equations general enough.
keshe1ode4
- 四阶龙格—库塔算法。自己在课程设计中就是用的这个算法。对于初学者有一定的帮助-Fourth order Runge- Kutta method. Own course design is to use this algorithm. Be helpful for beginners
被动调Q速率方程组仿真
- 基于Nd:YAG/Cr4:YAG的半导体激光器被动调Q ,速率方程组仿真(经典四阶龙格库塔法)。(the rate equation simulation of Nd:YAG/Cr4:YAG passively Q-switched solid laser.)
新建文本文档.tar
- 边值问题的数值解及其MATLAB程序;介绍了打靶法及其MATLAB程序; 用线性打靶法和常用的四阶龙格-库塔公式求解线性边值问题数值解的MATLAB主程序(Numerical solutions of boundary value problems and their MATLAB programs)
RK_4
- 这个四阶龙格库塔算法可以直接调用需要积分的状态方程,不用一步一步写出来(This four order Runge Kutta algorithm can call the integral equation of state directly, and do not write step by step)
RK45
- 变步长四阶龙格库塔法,可自己控制误差精度,可用于变参微分方程组,亲测可用(variable-step runge-kutta)
龙格库塔法的编程
- 龙格库塔求解微分方程数值解,工程中很多的地方用到龙格库塔求解微分方程的数值解, 龙格库塔是很重要的一种方法,尤其是四阶的,精确度相当的高(Runge Kutta is used to solve the numerical solution of differential equation in many places in the project, Rungekutta is a very important method, especially the fourth-order one,
四阶龙格库塔法
- 四阶龙格库塔法以及梆梆控制的程序,在最优控制中应用非常广泛,该程序具有学习指导作用