搜索资源列表
myworkonnnet
- 多层感知器(MLP)(BP算法训练)、径向基函数网络(RBF网络)、支持向量机(SVM)对2D Mexican Hat、Gabor、Friedman 以及Polynomial等几种函数数据集进行回归和预测-multilayer perceptron (MLP) (BP algorithm training), RBF network (RBF), Support Vector Machine (SVM) to 2D Mexican Hat, Gabor, Friedman Polynomial
Pattern-recognition-experiment1
- 基于多层感知器的DNA序列分类器的设计,里面有说明文档和源程序-Based on the DNA sequence of MLP classifier design, which has documentation and source code
SVM
- 基于SVM的分类器,它像多沉感知器一样,可以用于模式分类和多层回归!-Based on SVM classifier, it more like heavy perceptron as, can used for pattern classification and multi-layer return!
BP_final
- 多层感知器MLP网络以及BP算法,实现了对非线性函数的逼近,matlab进行编程-failed to translate
code
- 三道题,包括1:用多层感知器(MLP)神经网络误差反向传播(BP)算法实现异或问题:2:用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组 3:估计其功率谱-Three questions, including: 1 using multilayer perceptron ( MLP ) neural network and error back propagation ( BP ) algorithm to realize the XOR problem: 2: the odd
final2cop
- matlab用bp神经网络分类信号,采用多层感知器的神经网络,有隐含层5个节点-matlab bp neural network classification signal, the use of Multilayer Perceptron neural network hidden layer nodes
li1
- 请用多层感知器(MLP)神经网络误差反向传播(BP)算法实现异或问题(输入为,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S型Logistic函数。-Please use the Multilayer Perceptron (MLP) back propagation neural network (BP) algorithm XOR problem (input is required to determine the output is 0 or 1), and draw
multi-layer-perceptron-perform-
- 感知神经网络学习,多层感知器完成异或功能实现代码,供交流学习使用-Perceptual learning of neural network, multi-layer perceptron perform the XOR function implementation code used by the exchange of learning
matlab_ANN_MLP
- matlab程序,使用神经网络估算信号频率,附训练及测试数据(The matlab program uses neural networks to estimate the frequency of signals, along with training and test data)
[MATLAB神经网络30个案例分析](已阅)
- 人工神经网络 /多层感知器 归一化 神经网络的30个案例(artificial neural network/Multilayer perceptron normalization)
shiyan4
- 解决非线性多类别分类问题,利用实际数据进行分类处理。(Solving nonlinear multi class classification problem, using actual data for classification processing.)
p_or
- 这个例子是感知器人工神经网络的异或门实现,这是多层感知器神经网络的一个典型例子。(This example is the XOR gate implementation of perceptron artificial neural network, that is a classic example of a multilayer perceptron neural network.)
svm
- 支持向量机由Vapnik首先提出,像多层感知器网络和径向基函数网络一样,支持向量机可用于模式分类和非线性回归,该程序主要实现svm的分类和回归功能。(SVM was first proposed by Vapnik. Like multilayer sensor network and radial basis function network, SVM can be used for pattern classification and non-linear regression. The p