搜索资源列表
演示多目标perota优化问题
- %% 该函数演示多目标perota优化问题
power-system-problem-based-on-PSO
- 利用粒子位置和速度的改变更新,在熟悉多目标粒子群算法的基础上利用测试函数对该算法进行仿真,并对仿真结果进行优化。-The particle position and velocity changes update in the familiar multi-objective particle swarm optimization based on the use of test functions to simulate the algorithm, and the optimization
multi-ctp1
- 一个基于阈值的粒子比较准则,用于处理多目标约束优化问题,该准则可以保留一部分序值较小且约束违反度在允许范围内的不可行解微粒,从而达到由不可行解向可行解进化的目的;一个新的拥挤度函数,使得位于稀疏区域和Pareto前沿边界附近的点有较大的拥挤度函数值,从而被选择上的概率也较大 从而构成解决多目标约束优化问题的混合粒子群算法。-A comparison based on the threshold criteria for the particle to handle multi-objective
DE
- 差分进化程序,可实现多个变量的优化得到目标函数的最小值-DE
GA
- 遗传算法多目标优化的应用举例,求非线性函数最大值。-Multi-objective optimization genetic algorithm application example, the maximum value of nonlinear function.
iwo
- 入侵性杂草算法,连续型,多目标,多维函数优化。-invasive weed 0ptimization is a good optimal tools for any continual problem. IWO has been successfully applied to several electromagnetic optimization problems
YICHUANSUANFA
- 基于遗传算法的多目标函数优化在matlab中的实现,主要内容就是源代码-Based on genetic algorithm for multi-objective optimization in matlab to achieve, the main content is the source code
mtlab
- 基于遗传算法的多目标函数优化问题的一种有效方法-An effective method for multi-objective optimization problem based on genetic algorithm function
MOPSO-master
- 基于多目标粒子群优化算法 仿真程序 给出了三个cost函数,也可自己编写(pso path planning mobile robot)
chapter7多种群遗传算法的函数优化算法
- 用遗传算法去优化多种群问题,寻求目标的最优解(The genetic algorithm is used to optimize the multi-population problem and seek the optimal solution)
nsga2code
- 实现多目标优化,遗传算法,将种群全体按子目标函数的数目等分为子群体,对每一个子群体分配一个目标函数,进行择优选择,各自选择出适应度高的个体组成一个新的子群体,然后将所有这些子群体合并成一个完整的群体,在这个群体里进行交叉变异操作,生成下一代完整群体,如此循环,最终生成Pareto最优解(Achieve multi-objective optimization)
GA _new
- 多目标函数优化,举例说明,完整遗传算法;不错的学习算法(multi-objective function optimization;illustration;Complete genetic algorithm)
MOGOA
- 多目标蝗虫优化算法源代码,benchmark函数优化,测试效果好。(Multi-objective Grasshopper Optimization Algorithm (MOGOA) source codes)
BCCSA
- 多目标CSA优化算法(mocsa)的源代码,用于benchmark函数优化,测试通过,效果好(This demo implements chaotic CSA as feature selection aglorithm)
NSGAⅡ
- 利用NSGAⅡ算法处理多目标优化问题,测试函数包括ZDT1,2,3; DTLZ1,2,3。包含测试函数的真实前沿面数据。(NSGA II algorithm is used to deal with multi-objective optimization problems. The test functions include ZDT1,2,3 and DTLZ1,2,3. Contains the real frontier data of the test function.)
改进nsga2多目标优化
- 通过gamultiobj函数,实现基于nsga2的改进优化算法(An improved optimization algorithm based on NSGA2 is implemented by gamultiobj function)
Matlab多目标优化遗传算法源程序很好的应用案例
- 与常规的单目标遗传算法求解不同,该算法考虑两个目标函数的遗传算法(Different from the conventional single objective genetic algorithm, this algorithm considers the genetic algorithm of two objective functions)
用遗传算法求解多目标函数优化
- 多目标函数,在多个约束条件的情况下用遗传算法找出最优解(Multi-objective function, using genetic algorithms to find the optimal solution under multiple constraints)
多目标测试函数集
- 多目标测试函数集DTLZ1-7,无约束的7个多目标优化问题。 输入:种群、目标函数数量、决策变量数量、函数序号 输出:对应的函数值
NSGA-II-Matlab-master
- 针对带有约束条件的多目标函数,进行多目标参数优化(For the multi-objective function with constraints, the optimization is carried out)