搜索资源列表
EMD-Toolbox
- EMD的Toolbox及使用方法 经验模态分解(Empirical Mode Decomposition, 简称EMD)是由美国NASA的黄锷博士提出的一种信号分析方法.它依据数据自身的时间尺度特征来进行信号分解, 无须预先设定任何基函数。这一点与建立在先验性的谐波基函数和小波基函数上的傅里叶分解与小波分解方法具有本质性的差别。正是由于这样的特点, EMD 方法在理论上可以应用于任何类型的信号的分解, 因而在处理非平稳及非线性数据上, 具有非常明显的优势。所以, EMD方法一经提出就在不同的
wavelet
- 基于matlab的机械故障诊断系统的小波分析,能够加载正常信号与故障信号的数据,进行对比分析,适合初学者学习使用。-wavelet analysis