搜索资源列表
包括蚁群,模拟退火,遗传,神经网络,禁忌搜索等智能优化算法对TSP问题的解决
- 包括蚁群,模拟退火,遗传,神经网络,禁忌搜索等智能优化算法对TSP问题的解决,matlab程序。
PSO_B_SA
- 基于模拟退火的粒子群优化算法,示例程序,用于求解复杂函数的极值问题(源程序中的示例函数为Camel,Rastrigrin,Ackley)-PSO_A Alogrithm ,Hybrid particle swarm-based-simulated annealing optimization algorithm
six-humpcamelback
- 通用模拟退火优化算法 General simulated annealing algorithm 模拟退火优化算法能过较大限度的避免局部最优解 -General simulated annealing optimization algorithm General simulated annealing algorithm simulated annealing optimization algorithm can have a greater level of local optimal
pso
- 粒子群优化算法是一种进化优化技术,源于对鸟群扑食的行为,是一种基于迭代的优化工具。此文件提供了基本粒子群算法、带压缩因子的粒子群算法、二阶粒子群算法、二阶振荡粒子群算法、权重改进的粒子群算法、混沌粒子群算法、基于杂交的粒子群算法、基于模拟退火的粒子群算法的MATLAB源代码。-PSO is an evolutionary optimization technique, derived from the behavior of the birds of prey, is based on iter
monituihuo
- 基于混沌的模拟退火算法,计算机的优化算法,是毕设的内容-Chaotic simulated annealing algorithm, the computer algorithm is complete contents of set
gmt
- 此为遗传算法和模拟退火算法相结合的一个方法,可实现对函数的优化-This is the genetic algorithm and simulated annealing algorithm, a combination of methods, the optimization function can be realized
psooptimiton
- 粒子群求解无约束优化问题,包括基本粒子群算法,改进的粒子群算法,还有基于自然选择的粒子群算法和模拟退火的粒子群算法-Swarm for unconstrained optimization problems, including particle swarm algorithm, the improved particle swarm optimization, as well as natural selection based on PSO and simulated annealing p
pso
- 模拟退火算法——组合优化 模拟退火算法主要用于解决组和优化问题,它是模拟物理中晶体物质的退火过程而开发的一种优化算法。在对固体物质进行模拟退火处理时,通常先将它加温熔化,使其中的粒子可*,然后随着温度的逐渐下降,粒子也逐渐形成了低能态的晶格。若在凝结点附近的温度下降速率足够慢,则固体物质一定会形成最低能态的基态。 对于组合优化问题来说,它也有这样的类似过程。组合优化问题解空间中的每一点都代表一个具有不同目标函数值的解。所谓优化,就是在解空间中寻找目标函数最小(大)解的过程。若把目标
mounituihuoshiyan3
- 利用模拟退火算法优化网络参数,构建混沌神经网络-Simulated annealing
模拟退火算法解决tsp问题
- 设计一个可以对TSP问题进行组合优化的连续型Hopfield神经网络模型,利用该魔心可以快速的找到最优的一条路线。(A continuous Hopfield neural network model for combinatorial optimization of TSP problems is designed, which can be used to find the optimal route quickly.)
SA
- 使用模拟退火解旅行商问题,因为这个问题本身是一个NP难问题,所以也就求不到最优解,不过应该可以求得一个比较好的解,然后再手工优化。(Using simulated annealing to solve the traveling salesman problem, because the problem itself is a NP hard problem, so it can not find the optimal solution, but it should be able to ob
模拟退火算法
- 模拟退火算法属于现代优化算法的一种,,实现NP-hard组优化问题的全局最优解,解决大量的实际问题(The simulated annealing algorithm is one of the modern optimization algorithms, which can solve the global optimal solution of the NP-hard group optimization problem and solve a lot of practical probl
模拟退火算法
- 此种算法简单,有效,可以对所求的数据更加优化,使所求数据更加合理,绝对可以运行,请大家放心。(This algorithm is simple and effective. It can be more optimized for the data requested, so that the data is more reasonable and can be run. Please be assured.)
模拟退火
- 此代码用于求解二维数据中的优化问题,效果挺好的,文件里有二维数据的问题,大家可以好好看看!(This code is used to solve optimization problems in 2d data. The results are good. There are two dimensional data problems in the file, so you can have a good look!)
模拟退火算法计算函数最小值以及SVM参数寻优
- 利用模拟退火算法求解已知函数的最小值,即模拟退火算法寻优问题,可以广泛推广。(Using simulated annealing algorithm to solve the minimum of the known function, that is, the simulated annealing algorithm optimization problem, can be widely promoted.)
l3_simulated_annealing_algorithm
- 模拟退火算法MATLAB程序(寻找最佳路径的优化方式)(Simulated annealing algorithm MATLAB (search for optimal path optimization))
四旋翼无人机
- 四旋翼无人机SIMULINK建模,PSO_SA优化PID参数 reverse.m 作用:将History表中的string形式的key值转换为赋给九个全局变量temp00, ... ,temp08运行sum1.slx,可以直接观察此组参数的波形。 History 作用:映射表,将一组参数(temp00, ..., temp08)映射到这组参数的ITAE指标。 trojectory.m 作用:定义一条路径并进行路径压缩,通过不断向sum.slx传递位置参数,控制无人机运动,并接受无人机
用模拟退火算法求解优化问题.yuann
- 模拟退火算法求解优化问题,实例非常好,推荐下载(Simulated annealing algorithm to solve the optimization problem, the example is very good, recommended download)
MATLAB智能算法30个案例分析代码
- 压缩包内是关于BeiHang出版的matlab智能算法30个案例的代码,对于学习理解智能算法的原理和编程有一定的帮助。如遗传算法、粒子群算法、免疫优化算法、模拟退火算法、BP算法等。(there are 30 matlab codes, which match a book about intelligence algorithms,such as genetic algorithms, PSO, ACO,BPO,etc. WISH that will be help for you.)
111
- 用于求解带时间窗的多车场的配送路径优化问题,即vrp问题,算法是基于模拟退火算法和遗传算法的混合算法(The algorithm is a hybrid algorithm based on simulated annealing algorithm and genetic algorithm, which is used to solve the distribution path optimization problem of multi depot with time window)